论文略读:MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning

202404 arxiv

LoRA的改进

1 Lora的问题

过低的秩会严重限制模型学习和记忆新知识的能力,尤其在需要获取大量领域知识的任务上

2 mora

  • MoRA的关键在于使用方阵M取代LoRA的低秩矩阵A和B,以提升rank
    • 假设原权重矩阵W的维度为d×k
      • Lora的参数量为(d+k)r,rank为r
      • 相同参数量下,MoRA的rank为\sqrt{(d+k)r}

  • 至于压缩算子,论文给出了多种方法
    • 截断:直接截取部分维度

    • 共享:维度合并,共享同一个方阵M的值

    • 解耦:将输入reshape为矩阵,然后与M做矩阵乘法

    • 旋转:在解耦的基础上引入旋转矩阵,增强表达能力

3 结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>