
数学知识整理
文章平均质量分 57
UQI-LIUWJ
这个作者很懒,什么都没留下…
展开
-
数学笔记:傅里叶变化
简而言之,傅里叶变换把一个输入信号分解成一堆正弦波的叠加。也就是说,当我们将两个正弦波相加时,就会得到原来的波。这个波可以分解为两个正弦波的叠加。也可以分解成一组正弦波。原创 2023-09-24 16:02:08 · 299 阅读 · 0 评论 -
概率统计笔记:从韦恩图的角度区分 条件概率和联合概率
在已知某个事件发生的条件下,另一个事件发生的概率。用P(A∣B) 表示在事件 B 发生的条件下,事件 A 发生的概率。不难发现联合概率的样本空间更大(换算成分数就是分子一样,联合概率的分母大于等于条件概率的分母):两个或多个事件同时发生的概率。用 P(A∩B) 或 P(A,B) 表示。原创 2023-09-15 19:23:24 · 3115 阅读 · 0 评论 -
信息论/python笔记: 最大信息系数 MIC
衡量两个变量X和Y之间的关联程度,线性或非线性的强度相较于Mutual Information(MI)互信息而言有更高的准确度,是一种优秀的数据关联性的计算方式。原创 2023-06-19 21:53:31 · 3045 阅读 · 0 评论 -
数学知识整理:仿射函数(affine function)
仿射函数原创 2022-10-28 16:50:58 · 3294 阅读 · 0 评论 -
当分布 非正态分布时,能否使用Pearson Correlation?
数学笔记:pearson correlation coefficient VS spearman correlation coefficient_UQI-LIUWJ的博客-CSDN博客_pearson correlation coefficient与spearman correlati早期的模拟研究表明,在检验 ρ=0 的假设时,Pearson r 的抽样分布对非正态性的影响不敏感他们的结果表明,Pearson 的 r 对非正态性、非等区间测量以及非正态性和非等区间测量的组合具有稳健性。原创 2022-10-21 18:18:05 · 7812 阅读 · 0 评论 -
数学笔记;离散傅里叶变化 DFT
所以上式中的ω被表示为:所以离散傅里叶级数可以表示为: 上式可以被重写成: 用矩阵的形式,可以写成 的逆傅里叶变化是: 如果这里令的话,那么逆傅里叶变化的矩阵形式为还是用前面一个例子已知F[0]=20,F[1]=-4j,F[2]=12,F[3]=4j希望得到:f[0]=8,f[1]=4,f[2]=8,f[3]=0原创 2022-09-08 22:35:22 · 1004 阅读 · 0 评论 -
强化学习笔记 Ornstein-Uhlenbeck 噪声和DDPG
用SDE的形式表示,Ornstein-Uhlenbeck过程为:从SDE的角度看,随机过程包含两块:如果我们考虑离散形式,记单步step为τ:形式上就是 ,也即自回归形式AR(1) 通过上一小段,不难发现Ornstein-Uhlenbeck过程是时序相关的【且满足马尔科夫性,后一步的噪声仅受前一步的影响】,所以在强化学习的前一步和后一步的动作选取过程中可以利用Ornstein-Uhlenbeck过程产生时序相关的噪声,以提高在惯性系统(环境)中的控制任务的探索效率。【上一步的噪声和下一步的原创 2022-07-11 12:32:25 · 7099 阅读 · 1 评论 -
数学知识整理:布朗运动与伊藤引理 (Ito‘s lemma)
这个我记得是初中物理的知识。这里截取一段百度百科的说法,帮大家回顾一下: 用公式表示,布朗运动可以表示成 当X服从布朗运动的时候,求函数G(X,t)的全微分此时X和t是两个独立的变量,那么函数G(X,t)的全微分如下:.........原创 2022-07-09 15:03:54 · 5444 阅读 · 0 评论 -
数学知识复习:第二型曲线积分
设一质点在力F的作用下,沿曲线C运动,力F在曲线C的各点处的方向和大小可以是不同的,F(x,y)是一个向量函数,那么如何计算这个质点在变力F的作用下,沿曲线C由点A运动到点B所做的功呢? 弧上从A到B依次取点,于是 被分割成n段小弧 . 如果F(x,y)=P(x,y)i+Q(x,y)j, ,那么 ,其中 所以 (1)F,G在 上连续,a,b是常数,则有(2)如果曲线 上一点C将积分路线 分成两段,,则(3) 也是转化成定积分...原创 2022-06-29 15:59:44 · 1228 阅读 · 0 评论 -
数学知识复习:第一型曲线积分
如果空间曲线C的参数方程为,在上连续,f(x,y,z)在C上连续,那么有: ,C是单位元在第一象限的部分原创 2022-06-29 13:47:48 · 2093 阅读 · 0 评论 -
数学知识复习:三重积分
物体体积计算方法 设D为Oxy平面上的区域,C是它的边界。则 若空间区域Ω介于平面z=a和平面z=b (a原创 2022-06-21 20:38:01 · 3229 阅读 · 0 评论 -
数学知识整理:二重积分
(换言之,区域D被一条曲线分成两个部分区域D1和D2)如果函数f(x,y)在有界闭区域D上连续,那么在D上至少存在一点,使得,其中σ为区域D的面积二重积分的计算总是化成累次积分来进行,也就是做一次定积分,再做一次定积分来进行计算。 设函数f(x,y)在有界闭区域D上连续,如果变换 满足以下三个条件则有换元公式注:可以证明上述三个条件可以适当地放宽:对于(1)和(3),可以允许个别点/个别曲线上不满足;对于(2),可以允许分段连续求二重积分 其中区域D是由抛物线 围成的这里无论有那种次序的累次积分原创 2022-06-18 22:15:45 · 37553 阅读 · 1 评论 -
数学知识整理:不定积分
(推导过程如下:或者也考虑能不能三角代换在被积函数中,分母的次数比分子的次数高2次及以上时,可令 试试看对于,可以考虑使用进行代换此时对于(m≠n) ——>, 原式而前面我们知道:所以原式令x=sint 同样地,通过辅助三角,有:令 令 则x=2arctant 优先级(排在前面的是u,后面的是v)反三角函数>对数函数>幂函数>三角函数≥指数函数幂函数>三角函数,所以v是三角函数这俩优先级差不多又转了回去所以反三角函数>幂函数,所以v是幂函数...原创 2022-06-15 17:16:33 · 6653 阅读 · 1 评论 -
数学知识整理:三角函数公式复习
令二角和公式中的α=β即可倍角公式倒推推导:用二倍角公式+二角和公式参考内容:高中三角函数公式推理&记忆 - 知乎 (zhihu.com)原创 2022-06-14 11:24:18 · 937 阅读 · 0 评论 -
数学知识整理:极值&最值,驻点,拉格朗日乘子
设z=f(x,y)在定义域内一点处有二阶连续偏微商,且我们记 ,,则当Δ>0,A原创 2022-06-12 22:54:28 · 3116 阅读 · 0 评论 -
切线与切平面
对空间曲线,其在点处的切线方程是法平面方程是 如果α、β、γ分别表示曲面z=f(x,y)的法线的方向角,那么曲面法线的方向余弦可以表示为:γ为锐角时,取下面一组符号,为钝角时,取上面一组符号...原创 2022-06-12 21:52:44 · 3172 阅读 · 0 评论 -
概率统计笔记:超几何分布
1 定义设有 N 个同类产品,其中 M 个次品。从中任取 n 个 (假定 n ≤ N -M)。则这 n 个中的次品数 X 是离散型随机变量则称X服从超几何分布2 和二项分布的关系超几何分布是无放回抽样结果;二项分布可以看成有放回抽样结果。 当产品总数 N 很大时,两者分布近似相等。 ...原创 2022-05-14 12:05:41 · 1837 阅读 · 0 评论 -
数学知识整理:蒙特卡洛法近似定积分
1 一元函数的定积分近似给定一元函数f(x),求函数在a到b区间上的定积分蒙特卡洛法近似定积分的步骤如下:2 多元函数的定积分近似给定多元函数,求f在集合Ω上的定积分:蒙特卡洛法近似多元函数定积分的步骤如下:...原创 2022-05-10 21:47:51 · 725 阅读 · 0 评论 -
数学知识整理:函数 & 梯度
1 多元函数的基本概念1.1 函数的定义=A B f 一元函数 n元函数 n元m维向量函数原创 2022-05-09 10:43:43 · 3508 阅读 · 0 评论 -
数学笔记:FFT(快速傅里叶变换)
0 前言FFT是一个很厉害的算法,几乎任何和信号处理有关的算法都依赖于FFT0.1 引入:多项式的系数表示法我们从一个简单的问题中引入FFT:给定两个多项式,我们希望去计算二者的乘积中学的时候我们学过,展开相乘就可以了但是在计算机里面,一个很重要的问题是,如何存储一个多项式?显然,最自然的方法就是存储多项式的系数,我们把系数映射到一个列表中,这样列表中第k个数字正好对应第k阶系数——>这种表示方法,即是多项式的系数表示法一般来说,给定两......原创 2022-03-03 10:55:51 · 8429 阅读 · 0 评论 -
数学知识复习:二阶导复合函数的链式法则
1 结论2 证明令 那么原创 2022-01-23 21:23:46 · 12608 阅读 · 0 评论 -
max函数的平滑(log-sum-exp trick)
1 起源在一些问题中,我们的目标函数是max(x1,x2,...xn) 或者min(x1,x2,....xn),但是max和min都不是可微函数,因而这些目标函数无法直接用到深度学习任务中原创 2022-01-22 12:23:21 · 3048 阅读 · 0 评论 -
数学知识笔记:拉格朗日乘子
1 中心思想极值点处,函数和约束条件一定相切,梯度一定共线(同向or反向)2 无约束优化问题比如我们希望求解 min/max F(x),那么我们可以直接对所有m个变量求偏导,令偏导等于0。这时候联立出来的点就可能是极值点注意这里是可能,因为偏导等于0只是极值点的必要条件,并不是它的充分条件。(所以在求出可能的极值之后,需要带入原函数,检查一下是否在原函数中比周围的点都要小) 但从另一个角度讲,不满足偏导数等于0的点,肯定不是极值点。3...原创 2021-12-26 12:35:12 · 2866 阅读 · 0 评论 -
概率统计笔记:用python实现贝叶斯回归
0 理论部分:概率统计笔记:贝叶斯线性回归_UQI-LIUWJ的博客-CSDN博客1 数据集部分1.1 创建数据集import matplotlib.pyplot as plta_true = 2b_true = 1tau_true = 1n = 50x = np.random.uniform(low = 0, high = 4, size = n)y = np.random.normal(a_true * x + b_true, 1 / np.sqrt(tau_true)原创 2021-12-12 17:06:07 · 3650 阅读 · 0 评论 -
概率统计笔记:贝叶斯线性回归
1 引入在贝叶斯框架下,当我们假设变量服从正态分布根据共轭先验,我们知道:似然函数P(x|θ)为已知精度的正态分布时,它均值的共轭先验是正态分布(也就是此时均值的先验概率密度函数P(θ)和后验概率密度函数P(θ|x) 均为正态分布) 似然函数P(x|θ)为已知均值的正态分布时,它精度的共轭先验是伽马分布(也就是此时均值的先验概率密度函数P(θ)和后验概率密度函数P(θ|x) 均为伽马分布)概率统计笔记:共轭分布_UQI-LIUWJ的博客-CSDN博客_统计共轭所以...原创 2021-12-12 15:43:27 · 1312 阅读 · 0 评论 -
高斯伽马分布
定义对于一组随机变量(X,T),如果T|α,β~Gamma(α,β) X|T~N(μ,1/(λT))那么我们称(X,T)满足高斯伽马分布,记为 (X,T)~NormalGamma(μ,λ,α,β)概率密度函数性质高斯伽马分布是 不知道均值和精度的时候,高斯分布的共轭先验概率统计笔记:共轭分布_UQI-LIUWJ的博客-CSDN博客_统计共轭...原创 2021-12-10 23:41:35 · 1339 阅读 · 0 评论 -
概率统计笔记:白噪声与随机游走
1 白噪声1.1 定义白噪声是一个理想中的时序模型,它有一个重要的特性,即序列不相关:一个白噪声序列中的每一个点都独立的来自某个未知的分布,即它们满足独立同分布。考虑时间序列 。如果该序列的成分 满足均值为0方差为,且对于任意大于等于1的k,自相关系数均为0,则称该时间序列为一个白噪声。1.2 作用一个优秀的时序模型拟合出的残差序列应该(近似)为一个白噪声。(残差序列:拟合值-观测值。 使用白噪声序...原创 2021-12-08 15:49:34 · 7979 阅读 · 1 评论 -
概率统计笔记: 协方差与相关系数
1 协方差1.1 定义假设两个随机变量X和Y满足未知的概率分布,那么X和Y的协方差为:其中E是求解数学期望的运算符,μx,μy分别是X和Y的均值1.2 存在的问题协方差告诉我们两个随机变量是如何一起移动的,但只用协方差衡量变量相关性存在一些问题:协方差是有量纲的,它的大小受随机变量本身取值范围的影响。2 相关系数人们希望使用某个和协方差有关,但是又是无量纲的测量来描述两个随机变量的相关性。最简单的做法就是用变量自身的波动......原创 2021-12-08 13:27:56 · 2781 阅读 · 0 评论 -
Karp 21个规约问题 笔记 (1~13个规约问题)
0 证明格式0.1 证明一个问题属于NP0.2 多项式时间内将一个问题归约到另一个0.3 证明一个问题是NP完全的0.4 要证明的规约1 SAT —> 0-1 整数规范1.1 问题描述1.2 规约1.3 等价性证明2 SAT->CLIQUE2.1 SAT->3SAT->independent set->cliqueMAS 714 笔记20:规约和SAT_UQI-LIUWJ的博客...原创 2021-11-21 15:58:35 · 4281 阅读 · 0 评论 -
克里金插值
1 定义相比反距离插值反距离插值 IDW_UQI-LIUWJ的博客-CSDN博客,克里金插值公式更加抽象其中 是点 (xo,yo)处的估计值这里的 λi是权重系数。它同样是用空间上所有已知点的数据加权求和来估计未知点的值。但权重系数并非距离的倒数,而是能够满足点 (xo,yo)处的估计值与真实值 zo的方差最小的一套最优系数,即 同时满足无偏估计的条件2 普通克里金插值不...原创 2021-11-15 16:35:35 · 11106 阅读 · 16 评论 -
反距离插值 IDW
1 空间插值空间插值问题,就是在已知空间上若干离散点 的某一属性(如气温,海拔)的观测值 的条件下,估计空间上任意一点(x,y)的属性值的问题。2 地理学第一定律 地理表面上的所有属性值都是相互关联的,但较近的值比较远的值的相关性更强。3 反距离插值 地理学第一定律大意就是,地理属性有空间相关性,相近的事物会更相似。由此人们发明了反距离插值,对于空间上任意一点(x,y)的属性z=z(x,y),定义反距离...原创 2021-11-15 12:08:30 · 1876 阅读 · 0 评论 -
概率统计笔记:高斯分布的联合概率密度
1 符号说明我们的目的是求的概率2 求p(y)不难发现,y与x的关系为线性高斯模型,则yy与x符合下述关系于是可以得到y的分布3 求p(z)我们现在的目标就是求这个▲是什么参考资料:机器学习-白板推导系列笔记(二)-数学基础_scu-liu的博客-CSDN博客...原创 2021-11-04 12:39:02 · 2206 阅读 · 0 评论 -
概率论笔记:高斯分布的条件概率
1 符号说明将变量、均值和方差进行划分(xa是m维的,xb是n维的):其中x满足N(μ,Σ),μ,Σ满足:条件概率就是需要求解P(xa|xb)和P(xb|xa)2 需要用到的定理2.1 定理的说明这个证明不严谨,但是方便说明3 舒尔补4 计算条件概率条件概率再高斯过程回归中需要用到机器学习笔记:高斯过程_UQI-LIUWJ的博客-CSDN博客我们首先计算的分布,根据2的定理有:现在可以得到。根据与的关系可以得到的...原创 2021-11-04 12:21:58 · 4044 阅读 · 0 评论 -
概率论笔记:高斯分布的边缘概率
1 符号说明将变量、均值和方差进行划分(xa是m维的,xb是n维的):其中x满足N(μ,Σ),μ,Σ满足:边缘概率就是需要求解P(xa)和P(xb)2 需要用到的定理2.1 定理的说明这个证明不严谨,但是方便说明3 边缘概率求解我们以P(xa)为例:xa可以如下构造:那么根据2中的定理,有:所以同理,有参考内容:机器学习-白板推导系列笔记(二)-数学基础_scu-liu的博客-CSDN博客...原创 2021-11-04 12:00:40 · 1071 阅读 · 0 评论 -
概率统计笔记:高斯分布的等高线
1 概念复习1.1多维高斯分布1.2 马氏距离1.3 协方差矩阵的特征分解任意的N × N实对称矩阵都有N个线性无关的特征向量。并且这些特征向量都可以正交单位化而得到一组正交且模为1的向量。 于是有:而我们高斯分布概率密度函数是需要,所以我们再根据上式得到的表达式:2 将概率密度写成椭圆方程的形式上式中可以理解为将x减去均值进行中心化以后再投影到方向上,相当于做了一次坐标轴变换。当p...转载 2021-11-04 11:48:39 · 1983 阅读 · 0 评论 -
概率统计笔记:高斯分布の极大似然法,有偏&无偏估计
1 高斯分布2 参数θ的似然函数3通过极大似然估计法求解只保留似然函数中和μ有关的部分对μ求导,取偏导数为0的地方于是我们有:3.1是无偏估计证明无偏估计就是证明E[μ]=μ4通过极大似然估计法求解只保留似然函数中和σ有关的部分对σ求导4.1是有偏估计我们算一下Var[]所以也就是说所以E是有偏估计,无偏估计应该是:参考资料机器学习-白板推导系...原创 2021-11-04 11:19:18 · 1371 阅读 · 0 评论 -
数学笔记:重要性采样
1 重要性采样假设我们要计算一个函数f(x)的期望值,那我们可以从X的分布p中先采样一些x,然后再把x带到f里面,得到f(x)。 但如果我们没有办法从p这个分布里面采样数据呢? 我们可以从另外的一个分布q里面采样数据,q可以是任何数据 然后我们对f(x)的期望值做一个如下的修正:从 q 里面采样x,然后再去计算,再去取期望值所以就算我们不能从 p 里面去采样数...原创 2021-11-02 13:54:15 · 2041 阅读 · 0 评论 -
概率统计概念复习:MAP&MLE
1 似然函数与概率函数对于条件概率函数P(x∣θ):如果θ是已知确定的,x是变量,这个函数叫做概率函数(probability function),它描述对于不同的样本点x,其出现概率是多少。 如果x是已知确定的,θ 是变量,这个函数叫做似然函数(likelihood function), 它描述对于不同的模型参数,出现x这个样本点的概率是多少。2 MLE 最大似然估计,也就是最大化P(x|θ),而一般来说,这个x是很多独立的随机变量组成的,因此P(x|θ)可以是很多项P(x...原创 2021-10-27 20:50:15 · 271 阅读 · 0 评论 -
有负权重边的图可以有拉普拉斯矩阵吗?
在 看论文Temporal Regularized Matrix Factorization forHigh-dimensional Time Series Prediction的时候,看到了这样的一句话:‘However, such graph-based regularization fails in cases where there are negative correlations between two time points.’ 于是我就在想,有负权重...原创 2021-10-27 09:56:07 · 602 阅读 · 3 评论 -
概率统计笔记:共轭分布
1 共轭的定义在概率统计笔记:贝叶斯推断 Bayesian Inference_UQI-LIUWJ的博客-CSDN博客中,我们有:如果某个随机变量Θ的后验概率 p(θ|x)和先验概率p(θ)属于同一个分布簇的(有相同的形式),那么称p(θ|x)和p(θ)为共轭分布,同时,也称p(θ)为似然函数p(x|θ)的共轭先验。 换句话说:概率统计笔记:分布的核_UQI-LIUWJ的博客-CSDN博客 我们以高斯分布为例,如果p(x|θ)...原创 2021-10-26 15:39:59 · 4037 阅读 · 2 评论