
python库整理
文章平均质量分 59
UQI-LIUWJ
这个作者很懒,什么都没留下…
展开
-
debug 笔记:llama 3.2 部署bug 之cutlassF: no kernel found to launch!
按照官方的写法。原创 2025-03-26 17:57:13 · 401 阅读 · 0 评论 -
python 库笔记:pytorch-tcn
提供以下功能Conv1d。原创 2025-03-18 12:48:07 · 981 阅读 · 0 评论 -
深度学习&pytorch笔记:TCN
注:以下是个人观点:这边kernel_size=2(TCN的标准做法),所以此时dilation = 2**i还是dilation = kernel_size**i是无所谓的,但如果。每一个TemporalBlock是由两个因果扩张卷积组成的。如上图,把输出后的x5'和x6'裁剪掉。原创 2025-03-17 10:44:10 · 603 阅读 · 0 评论 -
datasets笔记:数据处理
打乱会创建索引映射,可能会降低性能。如果需要恢复性能,可以调用。原创 2024-12-22 00:01:15 · 357 阅读 · 0 评论 -
datasets 笔记: 文本数据集的预处理(Tokenization)
原先的text和label的基础上,多了input_ids,token_type_ids和attention_mask三个key。原创 2024-12-21 20:56:33 · 365 阅读 · 0 评论 -
datasets笔记:两种数据集对象
和。原创 2024-12-21 20:53:06 · 442 阅读 · 0 评论 -
datasets 笔记:加载数据集(基本操作)
参考了huggingface的教程。原创 2024-12-21 20:21:46 · 857 阅读 · 0 评论 -
python库笔记 brokenaxes,在坐标轴上创建断裂效果
定义 x 轴的多个区间范围,用于指定哪些部分显示,哪些部分被跳过。:定义 y 轴的多个区间范围,用于显示特定的 y 轴范围。:设置 y 轴的断裂间距,调整断裂之间的距离。:设置 x 轴的断裂间距,调整断裂之间的距离。:列表或元组的列表,例如。:列表或元组的列表,例如。原创 2024-11-16 23:05:11 · 409 阅读 · 0 评论 -
pandas笔记:高亮DataFrame
比如我们有这样一个随机DataFrame1。原创 2024-10-30 20:13:25 · 331 阅读 · 0 评论 -
accelerate 笔记:多个gpu training,一个gpu infer
首先,test_loader 不参与accelerate的prepare。其次,只在main_process的地方进行infer。原创 2024-09-09 09:20:20 · 281 阅读 · 0 评论 -
python 笔记 geo-bleu
【代码】python 笔记 geo-bleu。原创 2024-09-01 21:22:56 · 393 阅读 · 0 评论 -
Libcity笔记:strnn_encoder.py
所以对于 STRNN来说,它的eval_data的每个元素是:原创 2024-08-20 09:35:51 · 247 阅读 · 0 评论 -
pandas 笔记crosstab
用来计算两个(或更多)因子的交叉表(即频率表、列联表或透视表)。这个功能特别适用于统计分析和数据探索阶段,帮助理解不同变量之间的关系。原创 2024-08-16 22:08:37 · 760 阅读 · 0 评论 -
huggingface笔记:gpt2
包含 torch.FloatTensor 的元组(如果模型具有嵌入层,则为嵌入输出的一个 + 每层输出的一个),形状为 (batch_size, sequence_length, hidden_size)。的元组,每个元组包含形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的 2 个张量。(torch.FloatTensor,形状为 (num_heads,) 或 (num_layers, num_heads),可选) —原创 2024-07-06 15:17:18 · 2288 阅读 · 0 评论 -
huggingface 笔记:peft
将基础模型和 peft_config 与 get_peft_model() 函数一起包装以创建 PeftModel。模型训练完成后,可以使用 save_pretrained 函数将模型保存到目录中。之后就可以train了。原创 2024-06-25 12:58:25 · 1855 阅读 · 0 评论 -
accelerate 笔记:进程管理
如果在一个由多台机器组成的集群上运行训练作业,并希望每台机器都独立打印它们的日志信息,可以使用。: 如果在多台机器上运行训练作业,并且只希望最终的模型上传操作在所有进程中执行一次,可以使用。原创 2024-06-24 20:21:18 · 605 阅读 · 0 评论 -
numpy 笔记np.atleast_1d
【代码】numpy 笔记np.atleast_1d。原创 2024-06-15 13:25:06 · 254 阅读 · 0 评论 -
accelerate 笔记:对齐不同设备配置的性能
确保在所有分布式情况下使用 utils.set_seed() 完全设置种子,以使训练可复现。举例:假设我们有:两个GPU用于“多GPU”、一个带有8个工作站的TPU pod。学习率应该根据设备的数量线性缩放。原创 2024-06-05 11:04:30 · 781 阅读 · 0 评论 -
Accelerate笔记:本地SGD
本地 SGD 是一种分布式训练技术,其中梯度不是每一步都同步。 每个进程都会更新自己版本的模型权重,在给定的步数后,通过跨所有进程平均这些权重来同步它们。 在底层,本地 SGD 代码禁用了自动梯度同步(但累积仍然如预期工作!)。 它每 local_sgd_steps 步(以及在训练循环结束时)平均模型参数。 提高了通信效率,并且特别是在计算机缺乏如 NVLink 等更快的互连时,可以显著加速训练。 如有必要,本地 SGD 也可以与梯度累积结合使用 限制:当前的实现只适用于基本的多 GP原创 2024-06-04 11:39:22 · 341 阅读 · 0 评论 -
accelerate 笔记: find_executable_batch_size 自动选择合适的batch
Accelerate 提供了 find_executable_batch_size() 工具。 这个工具在因 OOM(内存溢出)条件失败时重试代码,并自动降低批量大小。 对于每个 OOM 条件,该算法将批量大小减半并重试代码,直到成功。原创 2024-06-03 22:34:25 · 276 阅读 · 0 评论 -
accelerate 的一个tip:early stopping 处可能存在的bug
这样只有进程1上也early stop之后,才会结束accelerate的分布式训练。原创 2024-06-03 21:51:07 · 509 阅读 · 0 评论 -
Accelerate 笔记:保存与加载文件
【代码】Accelerate 笔记:保存与加载文件。原创 2024-06-03 21:29:11 · 2374 阅读 · 0 评论 -
accelerate笔记:实验跟踪
【代码】huggingface笔记:实验跟踪。原创 2024-06-03 21:00:44 · 1960 阅读 · 0 评论 -
huggingface笔记 accelerate launch
用正确的参数在分布式系统上启动指定的脚本。原创 2024-05-27 16:12:36 · 2733 阅读 · 0 评论 -
huggingface 笔记:device_map
device_map在除了第一个GPU之外的所有GPU上均匀分配模型,并且只有在其他GPU放不下时,才在GPU 0上放置内容当你需要在生成 Transformers 模型的输出时使用GPU 0进行一些处理时,这个选项非常有用。原创 2024-05-25 16:40:28 · 9291 阅读 · 0 评论 -
huggingface 笔记:PretrainModel
(str 或 torch.dtype, 可选) — 覆盖默认的 torch.dtype,并在特定的数据类型下加载模型。返回模型的输入嵌入,即将词汇映射到隐藏状态的 PyTorch 模块。返回模型的输出嵌入,即将隐藏状态映射到词汇的 PyTorch 模块。是否强制(重新)下载模型权重和配置文件,覆盖已存在的缓存版本。(bool, 可选,默认为 False) -(bool, 可选,默认为 False) -自定义模型的输入嵌入层,通过提供一个新的。获取模型的内存占用(以字节为单位)来替换默认的输入嵌入。原创 2024-05-25 16:13:22 · 993 阅读 · 0 评论 -
huggingface笔记: accelerate estimate-memory 命令
模型与之集成的库名称,如 transformers。仅在 Hub 上未存储此信息时需要。原创 2024-05-22 18:41:45 · 778 阅读 · 1 评论 -
hugging face笔记:PEFT
r=64,:指定 LoRA 层的缩放因子。:设置在 LoRA 层中使用的 dropout 比率,以避免过拟合。r=64:设置每个 LoRA 层的秩,即低秩矩阵的维度。:指定不在 LoRA 层中使用偏置项。:设定这个 LoRA 配置是为了因果语言模型任务。原创 2024-05-21 13:18:00 · 1438 阅读 · 0 评论 -
机器学习/huggingface笔记:Transformer内存占用刨析 和高效训练
参考内容: Model training anatomy (huggingface.co)原创 2024-05-20 23:06:09 · 1308 阅读 · 0 评论 -
huggingface 笔记:查看GPU占用情况
为了打印GPU利用率和使用Trainer进行训练运行的摘要统计信息,定义了两个辅助函数。在我这边的GPU上跑不起来:可能是不同版本的cuda、pytorch导致的(不确定)原创 2024-05-20 23:22:46 · 710 阅读 · 0 评论 -
huggingface 笔记:Llama3-8B
【代码】huggingface 笔记:Llama3-8B。原创 2024-05-19 15:12:40 · 1018 阅读 · 0 评论 -
OpenAI 笔记:chat API
聊天模型接受一系列消息作为输入,并返回模型生成的消息作为输出。原创 2024-04-24 15:01:50 · 2594 阅读 · 0 评论 -
libcity笔记:参数设置与参数优先级
命令行参数(命令行python run_model.py时导入的)用户定义配置文件(命令行python run_model.py时由config_file导入的)模型所在模块默认参数。原创 2024-05-05 15:22:10 · 368 阅读 · 1 评论 -
libcity笔记:libcity/data/batch.py
1 Batch2 BatchPAD原创 2024-05-07 18:30:45 · 216 阅读 · 0 评论 -
huggingface笔记:使用accelerate加速
绿色的是加上的,红色的是去掉的。原创 2024-05-16 11:31:52 · 3662 阅读 · 0 评论 -
huggingface 笔记 finetune模型
在将预测传递给 compute 之前,需要将 logits 转换为预测。首先数据集需要使用pytorch需要的DataLoader。创建数据集的一个较小子集来进行微调,以减少所需的时间。然后调用 compute 方法计算预测的准确性。然后就是pytorch训练“三件套”【不用设计优化器欸】原创 2024-05-16 10:31:06 · 505 阅读 · 0 评论 -
huggingface 笔记:AutoTokenizer,AutoClass, AutoModel
AutoClass 是一个快捷方式,它可以自动从模型的名称或路径检索预训练模型的架构。只需要为任务选择适当的 AutoClass 及其关联的预处理类。原创 2024-05-13 10:12:47 · 656 阅读 · 0 评论 -
huggingface 笔记:pipeline
【代码】huggingface 笔记:pipeline (quick tour教程)原创 2024-05-13 09:49:51 · 741 阅读 · 0 评论 -
libcity 笔记:添加自定义dataset
那其他需要修改哪些内容,使得这个dataset生效呢。添加文件GeolifeDMDataset.json。原创 2024-05-09 15:31:28 · 366 阅读 · 0 评论 -
libcity 笔记:libcity/data/utils.py
1 get_dataset原创 2024-05-07 10:31:23 · 248 阅读 · 0 评论