
NTU课程
文章平均质量分 82
UQI-LIUWJ
这个作者很懒,什么都没留下…
展开
-
NTU 课程笔记:坐标系
已知两个坐标系A和B,其中A坐标系相对于全局坐标系的矩阵是。camera:旋转(Rc)+平移(Tc)对于A坐标系下坐标为。,B坐标系相对于全局坐标系的矩阵是。的点,可以用如下方式转换成。原创 2022-09-04 13:41:58 · 786 阅读 · 0 评论 -
NTU 课程笔记:向量和矩阵
齐次坐标系(原创 2022-09-03 23:55:30 · 253 阅读 · 0 评论 -
ntu课程笔记:MDA(Mechanics, Dynamics and Aesthetic)
MDA原创 2022-08-30 10:31:36 · 794 阅读 · 0 评论 -
NTU课程笔记:DeepLab
不过,随着后续CV模型的精进,可能每个点的feature已经可以很光滑、可以表现出很好的能力了,所以后续模型使用CRF的就不太多了。然后每个点有自己的属性特征/函数;点与点之间有它的属性特征,CRF对他们分别建模。...原创 2022-08-29 16:44:09 · 232 阅读 · 0 评论 -
NTU课程笔记:CV6422 time series
1 time series的种类1.1 按照时间片连续 & 离散分类1.2 按照时间序列个数分类(第二个其实也就是multivariate time series)2 时间序列和其他数据的不同之处数据之间不是独立的 长时间序列并不一直是最好的 ——>时间序列会随着时间变化,所以长时间序列并不一定一直是很好的 时间序列的pattern是动态的,会随时间变化 ——>观测的顺序很重要 3 时间序列组成部分3.1 trend..原创 2022-04-12 20:59:48 · 313 阅读 · 0 评论 -
ntu 课程笔记:experimental design
(y=f(x),x是自变量 independent variable,y是因变量 dependent variable)1 基本概念假设hypothesis:A testable prediction of the outcome of the experiment or research 空假设 null hypothesis:the statement that the independent variable will have no effect on the dependent var原创 2022-03-29 16:31:30 · 206 阅读 · 0 评论 -
NTU 课程笔记: CV6422 regression
0 回顾在NTU 课程笔记:Nonparametric statistics_UQI-LIUWJ的博客-CSDN博客中,介绍了Spearman Rank Correlation,来判断一对有样本之间是否有单调关系1 样本方差与协方差2 皮尔森关联度注意:rxy=0不一定可以推出x和y独立(rxy等于0只能说明x和y之间线性独立,但也有可能在非线性的空间内是不独立的)【反过来是对的,也即x和y独立可以推出rxy=0】3 模型3.1 确定性模型3....原创 2022-03-22 21:35:05 · 479 阅读 · 0 评论 -
NTU 课程笔记:Nonparametric statistics
0 前言我们回顾一下chi-square 分布,t分布和F分布不难发现,这三个都需要样本满足N(0,1)的条件,那么如果不满足N(0,1)的样本,怎么办呢?这时候就需要用到nonparametric test了1 nonparametric test又被称为 distribution-free test ,他不依赖于任何样本分布的假设1.1 中位数 与signed test这里使用中位数,而不是用均值我们假设样本X1,X2,....Xn,有μ的中位数,...原创 2022-03-16 23:29:58 · 893 阅读 · 0 评论 -
NTU 课程笔记 CV6422 ANOVA
0 前言在NTU 课程笔记:CV6422 置信区间_UQI-LIUWJ的博客-CSDN博客我们知道,如果两个样本的population 方差一样,且样本规模不大的话的话,可以用t分布进行两个样本均值之差的估计:用假设检验的方式表示,有:那么,如果我们需要比较的组别数大于2呢?我们当然可以通过两两比较的方式来判断是否他们的均值是一样的,但这样在组别多的时候会比较耗时,那么有没有什么方法,可以一步解决呢?换一种方式表示,即为如下的假设检验:1 问题定义2 先从两...原创 2022-03-08 18:03:44 · 273 阅读 · 0 评论 -
NTU 课程笔记:CV6422 goodness of fit
1 goodness of fit一个population 是否有一个特定的分布 (Ho假设)——>观测样本(oi)和期待频率(ei)之间fit的程度如何判断是否满足 v=k-r-1 自由度的chi-square 分布(r是从样本数据中可以估计到的参数个数)这里需要注意:每一个ei都必须≥5(小于的话可以合并成一组) ei是数量,不是概率或者比例 分母是一次方,分子是二次方1.1 举例1解:1.2 举例21 计算ei:...原创 2022-02-28 12:26:46 · 313 阅读 · 0 评论 -
NTU课程笔记 :CV6422(4) sampling process
1 finite population correction (fpc)如果我们从一个相对较小的有限数量样本中采样,会发生什么情况呢?我们给相对较小以一个定义:我们令population size 为N,采样数量为n,那么如果n/N>5%,那么我们可以人为这个population 相对较小对于相对较大的样本(n/N<0.05),或者无限数量的样本,我们可以用样本方差来近似均值的variance:但是如果样本相对较小的话,我们就要对上一项进行i一定的修正了...原创 2022-02-22 19:22:54 · 451 阅读 · 0 评论 -
NTU 课程笔记 :NLP - language model
1 language model一个语言模型会接受一组历史单词,然后尝试着预测跟在这组单词之后的单词1.1 词向量1.1.1 用上下文表示单词1.1.2 词向量 2 Word2Vec 一种有效地创建word embedding的方法2.1 主要思路我们现有一个语料库 每一个词汇表中的单词都被预先表示为一个向量 遍历语料库文本中的每一个位置,都会有一个中心单词c,和中心单词周围的几个单词o 使用词向...原创 2022-02-19 12:20:49 · 272 阅读 · 0 评论 -
NTU 笔记 6422quiz 复习(1~3节)
1 方差样本方差总体方差2 离散系数 coefficient of variation(百分比)3 切比雪夫法则对于所有的数据,已知其均值为μ标准差为s,那么对于任何大于1的k,[μ-ks,μ+ks]包含了至少1-1/k^2 比例的数据4 离散与连续概率密度5 随机变量的均值和方差6 伯努利分布——>正态分布/泊松分布n很大,而且p并不是很小(np>5,n(1-p)>5)——>可以用正态分布近似之...原创 2022-02-12 16:41:44 · 436 阅读 · 0 评论 -
NTU 课程笔记 CV6422 假设检验
1 H0与H1Ho:空假设,维持现状H1:可替换假设1.1 举例说明只看这个定义可能不太好理解H0和H1,我们举一个例子:假设现有的疫苗有25%的概率提供两年的保护,然后我们假设新的疫苗有比老疫苗更好的保护有效率那么在这种情况下,Ho是:'p=0.25',H1是:'p>0.25'比如我们设置分界线为82 两种误差无论我选择是否接受/拒接 Ho,都会带来一定的误差下图的意思是,在分界线的左边,我们选择Ho;在分界线的右边,...原创 2022-02-07 11:13:50 · 583 阅读 · 0 评论 -
NTU 课程笔记:CV6422 置信区间
1 置信区间 confidence intervalpopulation parameter的预测区间换句话说θ有1-α的概率落在这个置信区间内1.1:已知方差的正态分布的均值 的置信区间举个例子:已知方差的正态分布的均值,的置信区间随着置信等级的提升,置信区间的范围也在不断增加1.2从误差的角度理解置信区间如果均值是μ的预测,那么一个人有(1-α)的信心μ和的误差不会超过该值被称为误差边界(margin of...原创 2022-02-01 19:23:52 · 813 阅读 · 0 评论 -
NTU 课程笔记:CV6422 样本分布
1 样本均值的采样分布如果样本是从正态分布中采样得到的(population distribution 为正态分布),那么对于任何大小的n,样本均值都是正态分布 如果样本不是从正态分布中采样得到的,但是它的均值和方差已知(population distribution 不是正态分布,但是均值和方差为)。如果样本数量n很大的话(n≥30),那么样本均值可以被近似为正态分布如果样本是从正态分布中采样得到的(population distribution 为正态分布),但是未知,且n较小(小于3原创 2022-01-18 23:26:34 · 674 阅读 · 0 评论 -
NTU 课程笔记 CV6422 Statistical Methods & Applications (1) 基本统计知识
1 总体和样本的方差总体的方差样本(总体的一个子集)的方差 (这里的N-1是为了无偏估计)2 离散系数/变异系数 coefficient of variation标准差和平均值之比一般来说,越大表示越分散3 数据的图示3.1 箱式图 box-and-whisker plot3.2 QQ图 quantile-quantile plot可以来表示数据是一个什么样的分布我们令n表示样本数据个数,i表示当前数据的排序(最小的数排序为1),于是我们根据数据绘制如下图:.原创 2022-01-11 21:43:56 · 455 阅读 · 0 评论 -
NTU课程笔记 mas714复习:例题
1 画DFA1.1 题目描述1.2 思路先绘制相应的NFA然后使用NTU 课程辅助笔记: NFA到DFA的转化_UQI-LIUWJ的博客-CSDN博客将NFA转化成DFA 0 1 {A} {A,B} {A} {A,B} {A,B} {A,C} {A,C} {A,B,D} {A} {A,B,D} {A,B} {A,C,E} {A,C,E} {A,B,...原创 2021-11-21 22:23:35 · 392 阅读 · 0 评论 -
Karp 21个规约问题 笔记 (1~13个规约问题)
0 证明格式0.1 证明一个问题属于NP0.2 多项式时间内将一个问题归约到另一个0.3 证明一个问题是NP完全的0.4 要证明的规约1 SAT —> 0-1 整数规范1.1 问题描述1.2 规约1.3 等价性证明2 SAT->CLIQUE2.1 SAT->3SAT->independent set->cliqueMAS 714 笔记20:规约和SAT_UQI-LIUWJ的博客...原创 2021-11-21 15:58:35 · 4281 阅读 · 0 评论 -
NTU 课程笔记:self-supervised learning
1 为什么需要 self-supervision?为每个新的任务都创建一个新的数据集,开销是很大的 有些领域标注是很稀缺的(比如医疗领域) 有些领域 数据集太大,来不及标注 self-supervision 很像婴儿学习的方式2 什么是self-supervisonA form of unsupervised learning where the data provides the supervision(用数据本身创造label) In general, withhold some pa原创 2021-11-12 12:50:27 · 289 阅读 · 0 评论 -
MAS 714总复习
1 big-O notationsNTU课程笔记 MAS714(2) Big-O notations_UQI-LIUWJ的博客-CSDN博客2 graph& bfs+dfsNTU课程:MAS714 (3)Graph Algorithms_UQI-LIUWJ的博客-CSDN博客NTU 课程: MAS714(3) DFS & BFS_UQI-LIUWJ的博客-CSDN博客3 网络流NTU 课程笔记: 网络流_UQI-LIUWJ的博客-CSDN博客...原创 2021-11-11 13:26:42 · 328 阅读 · 0 评论 -
MAS 714笔记: NP完全问题
1 NP完全性我们先回顾一下P和NP那么对于属于NP的问题,什么问题是NP中最难的问题呢?2 NP困难问题NP完全是NP困难的子集(因为属于NP完全的问题需要在NP中,但NP困难问题则没有这个约束条件)3Cook-Levin Theorem 证明比较繁琐,略去4 证明一个问题X是NP完全问题注意方向,是SAT归约到别的NP完全问题中4.1 3SAT是NP完全问题在MAS 714 笔记20:规约和SAT_UQI-LIUWJ...原创 2021-10-29 23:19:53 · 594 阅读 · 0 评论 -
MAS 714 笔记20:规约和SAT
1 规约(reduction)一个从问题X到问题Y的规约:如果我们有一个问题Y的算法,我们可以用这个问题Y的算法来找到求解问题X的算法。 我们可以使用规约来: 1)找到解决问题的算法 2)说明有一些问题我们无法找到有效的算法1.1 语言的规约也就是说,这个规约算法输入Lx中的语言w,输出一个Ly中的语言w‘1.2 决策问题的规约也就是说,这个规约算法输入X中的语言Ix,输出一个Y中的语言Iy...原创 2021-10-29 16:53:41 · 626 阅读 · 0 评论 -
NTU 课程笔记 7454 GAN
1 GAN介绍假设我们从分布中采样除了数据集xi,我们需要得到更多的数据,以满足分布1.1 基本想法基本的想法就是1)引入一个具有先验分布p(z)的潜变量z2)从p(z)中采样z,将其传递给生成网络(generator network)G,得到x (即x=G(z))3)x便是一个从生成分布中得到的样本,我们希望4)与此同时,我们会有一个区分网络(discriminator network),来区分数据是真实的还是虚假的,我们的目的是希望我们生成的假数据能够“以假乱真”..原创 2021-10-24 22:36:56 · 243 阅读 · 0 评论 -
NTU 课程辅助笔记: NFA到DFA的转化
我们以这张图为例:用Finite State Machine Designer - by Evan Wallace (madebyevan.com)画的,有几条边的mark没画好错位了1 写出状态转换表行index表示状态,列index表示条件,表格内的是后继状态2 求出ε-闭包 (ε-closure)ε-closure(s)表示由状态s经由条件ε可以到达的所有状态的集合(包括自身)ε-closure(0) {0,1,2,4,7} ε-...原创 2021-10-23 14:41:34 · 2031 阅读 · 0 评论 -
NTU 课程笔记: P&NP
1 RAM与 图灵机1.1 RAM (random access machine) 有限数量的算术寄存器 无限数量的内存空间 指令集包括: 从寄存器中读/写 寄存器上的算术运算 内存地址查询 1.2 图灵机可以模拟 RAM如果一个计算在RAM上需要T(n)步的话,我们可以在图灵机上使用最多步来模拟它1.2.1 Church-Turing Thesis每一个算法多可以用图灵机来实现之2 图灵机的复杂度2.1时原创 2021-10-23 13:44:10 · 335 阅读 · 0 评论 -
NTU 课程笔记:MAS 714(16) 图灵机
除了DFA有的 read、move、change state之外,还多了write操作1 正式定义1.1 转移方程direction可以是tape向左、向右、不动1.2 图表示图灵机状态为q的时候,看到字符a,那么会转移到状态p,将字符a改成b,同时tape向左移动一格1.3 图灵机的接受当一个语言w到达过,那么图灵机就能接受这个语言1.4 图灵机的拒绝...原创 2021-10-12 21:57:20 · 211 阅读 · 0 评论 -
NTU 课程笔记: MAS714 14&15 regular language
1 几个概念字母表Σ 一组非空、有限数量的元素(英文翻译为symbol)组成的集合 字母表的字符串 这个字母表中元素组成的有限长度的序列 ε 长度为0的字符串(空串) X和y的拼接 (concatenation) 如果x和y是字符串,那么xy就是x和y的拼接 拼接的性质:结合律、无交换律、幺性 语言(language) 一组字符串 2 有限自动机2.1 确定有限自动机 (Det..原创 2021-10-09 02:41:42 · 272 阅读 · 0 评论 -
NTU 课程笔记13:线性规划(对偶性)
1 引言这是上节课的线性规划我们现在的目标是:找到最优解的下界(不是紧下界,任何一个下界都算找到下界)这个很简单,任何一个满足约定条件的(A,B)求出来的 profit,都是一个下界那么上界怎么找呢?我们取约束式的一个线性组合此时我们发现 上界下界都是800,所以最优解就是8002 LP的对偶性调整一下,对上面求上界的方法,我们这么表示之:我们的目的是找最小的上界2.1 对偶问题的理解于是我...原创 2021-10-02 13:24:21 · 211 阅读 · 0 评论 -
MAS 714课程笔记12: 线性规划
1 线性规划问题概述写成矩阵&向量的形式,有:1.1 线性规划举例 这也是本小节所使用的例子比如我们要使用corn、hops和malt来制作ale和beer,每种饮品所需要的原材料、可以带来的收益、以及各种原料材料的数量如下图所示 我们现在需要求得最大的收益1.1.1 线性规划方程但是上式和1中的标准型还是有一定的区别的标准型:我们记n为变量的数量;m为限制条件的数量;L为编...原创 2021-10-01 21:01:37 · 237 阅读 · 0 评论 -
ntu课程笔记7454 期中复习
LC 1NTU 21fall-CE 7454(deep learning for data science)笔记_UQI-LIUWJ的博客-CSDN博客 Xβ=Y ,线性回归的结果是X——>将向量X 逆时针旋转θ旋转矩阵一般是有复数值的特征值和复数值的特征向量特征值分解:(若是对称矩阵,可以写成:)将正定但是不对称的矩阵C转变成对称矩阵A:通过加上一个反对称、但是对角线元素都为0的矩阵。orthono...原创 2021-09-28 00:19:08 · 301 阅读 · 0 评论 -
NTU 课程笔记 CE7454作业(1):DeepFashion属性预测挑战【介绍篇】
1 重要日期2 任务介绍这个小挑战的目标是识别时尚照片中描述的属性标签。我们的数据集有6000张图像,其中5000张用于训练,1000张用于验证。测试集将在网上进行最终评估。数据集使用了26个属性标签,它们是服装的常见描述。这些属性被分为6个主要类别。每一张图片都有6个属性,每个类别都有一个。您的算法需要预测给定图像具有哪些属性。因此,这是一个多标签分类问题。我们还为训练、验证和测试集中的每件衣服提供真实标志和边界框。...原创 2021-09-21 10:19:41 · 338 阅读 · 0 评论 -
NTU 课程笔记: 网络流
1 网络流定义1.1 s-t 流f的value也等于流入f的f(e)的总和2 最大流问题找到满足capacity和flow conservation 两个条件的流的最大值2.1 s-t 割注:只考虑A到B的边,不考虑B到A的边以上图为例,capacity是10+8+10=282.2 最小割问题:找到各个割(cut)中,最小的capacity2.3最大流问题尝试:贪心算法我们先试一下贪心算法,看看可不可行还是以这张图...原创 2021-09-19 10:09:00 · 292 阅读 · 0 评论 -
NTU 课程笔记:ERIC 总结
1 应用1.1 问题1你刚刚收到了一些好消息。 您作为主要作者的第一篇出版物已被您所在领域的领先期刊接受并进行修订。 这是您提交给两个不同期刊的两篇论文中的第一篇。在提交最终稿件之前,编辑附上了一份包含匿名评论的文件,供您阅读和回复。 您已与您的研究主管和合著者分享了这一消息,并已召开会议来审查这些评论。您决定在会前通读评论并打开第一篇评论: “总体而言,这项工作显示出良好的原创性和对该领域的强大贡献。但是,方法的描述过于简短,读者无法充分理...原创 2021-09-15 16:44:10 · 525 阅读 · 0 评论 -
NTU 课程 ERIC(5) 对社会的责任
1 引言今天,大多数研究人员的工作得到了一些公众支持,无论是直接的还是间接的。 即使在艺术和人文科学等没有大量直接资助的领域,公共拨款对于维护图书馆、博物馆和特殊收藏仍然必不可少。公众支持伴随着期望:公众将从研究人员所做的工作中学习并受益。 从研究人员的角度来看,这种期望变成了两个最终的责任:负责任地与公众互动 注意研究人员对社会的义务。2 提倡研究提供信息,但不提供关于如何处理这些信息的指导。例如,即使所有研究人员都...原创 2021-09-15 16:24:12 · 175 阅读 · 0 评论 -
NTU 课程 7454 (5) CNN进阶
1 Resnet机器学习笔记:ResNet 及残差连接_UQI-LIUWJ的博客-CSDN博客2 Wide ResNet(2016)中心思想:当时一些CNN网络是瘦长瘦长的(高达1001层);但这个模型证明,宽而且浅的模型(18~50层左右,也可以有很好的表现) 层数会存在边际效益递减:比如:5~18层——效果提升的异常显著;18~50层——有不错的效果;50层+——可能多一层就没啥显著的效果了基本单元形式:这里16*k是指,chan......原创 2021-09-15 02:31:01 · 332 阅读 · 0 评论 -
NTU 课程笔记:MAS714(9) 动态规划
1 动态规划和分治的区别分治:问题分成几个独立的子问题,他们会分别解决。最后再将各个子问题的结果合并成一个大的结果 动态规划:问题分成几个相互依赖或者重叠的问题。使用空间换时间的方法避免重复计算,一般从下往上计算子问题。2 动态规划举例:斐波那契数列2.1 斐波那契额数列的描述其中F(0)=0,F(1)=12.2 斐波那契数列的通项高中还会求的,好像是解一元二次方程然后算系数(记不清了,之后回家翻一下笔记补上去。。。)总之,斐波那契数列...原创 2021-09-10 23:37:16 · 205 阅读 · 1 评论 -
NTU课程笔记 CE7454 (3):MLP&CNN
1 MLP1.1 MLP的强大两层MLP几乎可以实现实数范围内的任何函数2 激活函数,tanh机器学习笔记:激活函数_UQI-LIUWJ的博客-CSDN博客3 多分类问题代表每一类的概率3.1 多分类问题交叉熵先回顾一下二分类问题的交叉熵:多分类问题的交叉熵:这时候多分类问题的这个 yi就不是0或者1了,它是一个onehot向量4 CNN机器学习笔记:CNN卷积神经网络_UQI-LIUWJ的博客-CSDN博客5 resnet...原创 2021-09-10 14:35:29 · 289 阅读 · 0 评论 -
NTU课程笔记 MAS714(8) 分治与排序
1 分治主要思想将问题分割成多个子问题(divide ) 递归地解决问题 把子问题的结果合并成总问题的结果(conquer)2 排序2.1 插入排序假设输入是A[1...n]2.1.1 时间复杂度令T(n)表示排序n个元素的时间复杂度于是我们有2.2 合并排序在第三步合并的时候,我们需要创建大小为n的数组C,从左向右扫描A和B,将小的元素放入C中,然后将相应的指针向后移动2.2.1 时间复杂度那么,如何计算这个呢?我们使用递...原创 2021-09-06 19:23:56 · 201 阅读 · 0 评论 -
ntu 课程笔记 :MAS714(7) 最短路径和优先队列
DFS & BFS_UQI-LIUWJ的博客-CSDN博客中所说的图的遍历问题1.2 naive shortest path1.2.1 铺垫BFS通过和源节点之间的距离,一层一层地向外遍历节点。相似地,我们也可以用BFS来计算最短路径。 令dist(v)表示从原点s到v的最短路径长度;第i轮的S里面已经有前i-1个距离s最近的点 那么核心问题就是,怎么find?claim 1:如果P是从...原创 2021-09-05 22:06:28 · 210 阅读 · 0 评论