
R
文章平均质量分 83
UQI-LIUWJ
这个作者很懒,什么都没留下…
展开
-
R 笔记 MICE
MICE(MultipleImputationbyChainedEquations)是一种处理数据集中缺失数据的稳健、信息丰富的方法。该过程通过一系列迭代的预测模型“填充”(估算)数据集中的缺失数据。在每次迭代中,数据集中的每个指定变量都使用数据集中的其他变量进行估算。不断迭代在,直至收敛。...原创 2022-07-27 20:33:40 · 3363 阅读 · 0 评论 -
R笔记:读写文件
1 读文件1.1 读txtdata1<-read.table('tmp.txt',sep=',',header=FALSE)data1'' V1 V2 V3 V41 index x y NA2 1 2 3 NA3 2 3 4 NA4 3 4 5 NA''data2<-read.table('tmp.txt',sep=',',header=TRUE)data2'' index x y1 1 2原创 2022-04-30 17:28:59 · 248 阅读 · 0 评论 -
论文笔记 & R 笔记:imputeTS: Time Series Missing ValueImputation in R
0 摘要imputeTS 包专门研究单变量时间序列插补。它提供了多种最先进的插补算法实现以及用于时间序列缺失数据统计的绘图函数。虽然插补通常是一个众所周知的问题,并且被 R 包广泛覆盖,但找到能够填补单变量时间序列中缺失值的包更加复杂。其原因在于,大多数插补算法依赖于属性间相关性,而单变量时间序列插补则需要使用时间依赖性。本文介绍了 imputeTS 包及其提供的算法和工具。此外,它简要概述了 R 中的单变量时间序列插补。1 introduction从工业 (Billinton et al.原创 2022-04-30 09:42:37 · 2779 阅读 · 1 评论 -
机器学习笔记: 时间序列 分解 STL
1 前言STL(’Seasonal and Trend decomposition using Loess‘ ) 是以LOSS 作为平滑方式的时间序列分解 LOSS可以参考机器学习笔记:局部加权回归 LOESS_UQI-LIUWJ的博客-CSDN博客2 STL分解大致流程和思路2.1 主体流程时间序列分解-STL分解法 - 钮甲跳 - 博客园 (cnblogs.com)中展示了一张STL方法内循环的流程图,我觉得说得蛮好的,附上方便理解STL分...原创 2022-02-15 23:56:36 · 13685 阅读 · 5 评论 -
R 笔记 prophet
0 理论部分论文笔记:Forecasting at Scale(Prophet)_UQI-LIUWJ的博客-CSDN博客Prophet 是一种基于加法模型预测时间序列数据的程序,其中非线性趋势、季节性以及假日效应相匹配。它最适用于具有强烈季节性和有几个季节历史数据的时间序列。Prophet 对缺失数据和趋势变化具有鲁棒性,并且通常可以很好地处理异常值。...原创 2022-02-13 09:35:13 · 4970 阅读 · 5 评论 -
机器学习笔记:时间序列分解(滑动平均)
0 前言时间序列数据可以表现出多种模式,将时间序列拆分为多个组件通常很有帮助,每个组件代表一个基础模式类别。在机器学习笔记(时间序列):不同类型的图示_UQI-LIUWJ的博客-CSDN博客中,我们讨论了三种类型的时间序列模式:趋势、季节性和周期。 当我们进行时间序列分解时,我们通常将趋势和周期组合成单个趋势周期组件(为简单起见,有时就称为趋势)。 因此,我们认为时间序列包含三个部分:趋势周期部分、季节性部分和剩余部分(包含时间序列中的任何其他内...原创 2022-02-08 11:45:48 · 9719 阅读 · 0 评论 -
机器学习(时间序列):线性回归之虚拟变量 dummy variables
1 前言当预测变量是分类变量时,我们可以引入虚拟变量,作为回归的虚拟变量 虚拟变量也可用于解释数据中的异常值。 虚拟变量不会忽略异常值,而是消除其影响。 在这种情况下,虚拟变量对该观察值取值为 1,而在其他任何正常的地方取值为 0。2 季节性虚拟变量假设我们正在预测每日数据,并且我们希望将星期几作为预测变量。 然后可以创建以下虚拟变量。请注意,对七个类别进行编码只需要六个虚拟变量。 这是因为第七类(在本例中为星期日)被截距捕获,并在虚拟变量全部设置为零时...原创 2022-02-05 12:48:03 · 10622 阅读 · 0 评论 -
机器学习笔记 时间序列预测(基本数据处理,Box-Cox)
数据调整调整历史数据通常会导致更简单的预测任务。在这里,我们处理四种调整:日历调整、人口调整、通货膨胀调整和数学变换。这些调整和转换的目的是通过消除已知的变化源或通过使整个数据集的模式更加一致来简化历史数据中的模式。 更简单的模式通常会导致更准确的预测。1 日历调整在季节性数据中看到的一些变化可能是由于简单的日历效应。 在这种情况下,如果在拟合预测模型之前消除变化,通常更容易。例如,如果您正在研究农...原创 2022-02-05 10:33:09 · 3256 阅读 · 6 评论 -
机器学习笔记 时间序列预测(最基本的方法【benchmark】)
1 最基本的方法这些方法将作为这个系列的benchmark有时,这些简单方法中的一种将是可用的最佳预测方法; 但在许多情况下,这些方法将作为基准而不是选择方法。 也就是说,我们开发的任何预测方法都将与这些简单的方法进行比较,以确保新方法优于这些简单的替代方法。 如果没有,新方法不值得考虑。1.1 平均法所有未来值的预测都等于历史数据的平均值(或“平均值”)。1.1.1 R语言实现library(forecast)y<-ts(c(5,3,3.1,3.2,3.3,3.4.原创 2022-02-05 10:05:09 · 1772 阅读 · 0 评论 -
机器学习笔记(时间序列):不同类型的图示
1 时间图 time-plot就是最普通的绘制一张随时间变化的连点图。不过在这一张图中,可能会有时间序列的不同属性:趋势、季节性、周期性1.0 R语言补充:设置时间序列y <- ts(c(123,39,78,52,110), start=2012)如果我们不是一年一个数据,那么我们可以设置freq,表示一年的频率y<-ts(c(5,3,3.1,3.2,3.3,3.4,3.5,3.3,3.2,4,4.1,4.2, 6,4,4.1...原创 2022-02-02 17:46:32 · 4675 阅读 · 0 评论