Python 数据处理
(1)python 透视
pd.pivot_table(数据表,values=[“A”,“B”,“C”,“D”],index=[“科目”,“投放模式”],aggfunc=np.sum)
eg:
data7=pd.pivot_table(data7,values=["现金消费","已分配量(成年)","总成交额","总报名数"],index=["科目","投放模式"],aggfunc=np.sum)
# values--需要的值
# index--根据~~透视,放的顺序和excel透视类似
# aggfunc--透视计算方式 (np.sum表求和)
(2)python 合并表
pd.concat([表1,表2,表3,…],sort=False)
result = pd.concat([data1,data2,data3,data4,data5,data6,data7],sort=False)
(3)python 拆分单元格内容
数据表.str.split(‘分’)
yes_data1['分公司'] = yes_data1["部门/个人"].str.split('分').str[0]+"分"
#会将数据拆分成2个,str[0] 指第一个
Python数据处理技巧:透视、合并与单元格拆分
本文介绍了Python中进行数据处理的三个关键操作:使用pandas的pivot_table函数进行数据透视,通过concat方法合并多个数据表,以及利用str.split方法拆分单元格内容。这些技巧对于数据分析师和数据科学家来说是必不可少的数据预处理工具。
564

被折叠的 条评论
为什么被折叠?



