我是一个对称矩阵
码龄8年
关注
提问 私信
  • 博客:1,487,033
    社区:2,624
    问答:978
    动态:3,459
    视频:6,069
    1,500,163
    总访问量
  • 272
    原创
  • 5,974
    排名
  • 24,242
    粉丝
  • 712
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:中国
  • 加入CSDN时间: 2017-09-14
博客简介:

xu.hyj

查看详细资料
  • 原力等级
    当前等级
    8
    当前总分
    5,885
    当月
    90
个人成就
  • 人工智能领域优质创作者
  • 博客专家认证
  • 获得1,751次点赞
  • 内容获得350次评论
  • 获得4,736次收藏
  • 代码片获得16,590次分享
创作历程
  • 27篇
    2025年
  • 28篇
    2024年
  • 18篇
    2023年
  • 121篇
    2022年
  • 76篇
    2021年
  • 1篇
    2020年
  • 1篇
    2019年
成就勋章
TA的专栏
  • 文章
    12篇
  • Manus AI
    1篇
  • TensorRT全流程部署指南
    10篇
  • 环境搭建
    12篇
  • ML离不开的数据集
    4篇
  • LLM
    1篇
  • TensorRT
    3篇
  • 小目标检测
    6篇
  • git
    3篇
  • VScode
    1篇
  • Linux
    4篇
  • 系列
    2篇
  • PyQt5
    4篇
  • paddlepaddle
    8篇
  • 深度学习DL
    19篇
  • 深入浅出PyTorch
    19篇
  • 论文集
    32篇
  • Android
    3篇
  • Debug专栏
    8篇
  • Python
    19篇
  • 图像处理初学者应该学习的100个问题-你都学会了吗?
    8篇
  • 奇淫技巧
    12篇
  • numpy
    5篇
  • keras
    11篇
  • opencv-python
    10篇
  • 人脸识别
    3篇
  • TensorFlowLite
    4篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉深度学习pytorch边缘计算
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

微小目标检测:《RFLA: Gaussian Receptive Field based Label Assignment for Tiny Object Detection》

微小的物体以其极其有限的像素数量为特点,在计算机视觉社区中始终是一个难以破解的难题。微小目标检测 (TOD) 是最具挑战性的任务之一,由于微小目标缺乏区分特征,通用目标检测器通常无法在 TOD 任务中提供令人满意的结果。
原创
发布博客 2025.03.10 ·
1188 阅读 ·
11 点赞 ·
0 评论 ·
22 收藏

Manus AI:通用AI代理的技术深度剖析与产业变革潜力

2025年3月,全球首个通用AI智能体Manus横空出世,迅速引爆科技圈。这款由中国团队Monica.im开发的产品,不仅能够理解复杂指令,还能自主规划并执行任务,真正实现从“思考”到“行动”的闭环。Manus的出现,标志着AI从“对话工具”向“执行引擎”的范式跃迁,为生产力变革带来了无限可能。
原创
发布博客 2025.03.07 ·
476 阅读 ·
7 点赞 ·
0 评论 ·
5 收藏

感悟:2048天的创作旅程

时光荏苒,转眼间,我已经在技术创作的道路上走过了2048天。回想起2019年7月23日,那个平凡却又意义非凡的日子,我写下了第一篇技术博客《关于for i in list1: 中i变量的内容》。那时的我,或许只是怀着记录学习点滴的初心,或许是为了在技术的海洋中找到自己的方向。无论如何,那一刻,我迈出了创作的第一步。
原创
发布博客 2025.03.01 ·
140 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

使用nvjpeg解码jpeg图像

在深度学习的应用场景中,常常会涉及接收来自多个相机的图像数据,例如在监控系统、自动驾驶多传感器融合等领域。然而,大量的图像数据传输会消耗大量的带宽,为了解决这一问题,在传输过程中通常会对图像进行JPEG编码。通过这种编码方式,可以在保证一定图像质量的前提下,大大减少数据量,从而加快数据传输速度。但这也带来新的问题:在对图像进行模型推理之前,我们需要先对这些JPEG编码的数据进行解码,然后再开展后续的预处理和推理工作。图像的解码效率在很大程度上直接影响整个系统的执行速度。
原创
发布博客 2025.02.26 ·
2257 阅读 ·
81 点赞 ·
0 评论 ·
31 收藏

ubuntu中打包与压缩命令详解

在 Ubuntu 系统中,打包和压缩文件是常见的操作。通过打包和压缩,可以将多个文件或目录合并为一个文件,并减小文件大小以节省存储空间或方便传输。本文将详细介绍 Ubuntu 中常用的打包与压缩命令及其用法。以下是 Ubuntu 中常用的打包与压缩命令及其用途: 是 Ubuntu 中最常用的打包工具,支持多种压缩格式(如 gzip、bzip2、xz)。将多个文件或目录打包为一个 文件。选项说明:创建新的打包文件。:显示打包过程。:指定打包文件名。示例打包目录:打包多个文件:打包
原创
发布博客 2025.02.23 ·
1235 阅读 ·
12 点赞 ·
0 评论 ·
27 收藏

如何自适应计算二值化的阈值

二值化是将灰度图像中的像素值根据阈值进行分类,使像素值变成 0(黑色)或 255(白色)。如果像素值小于阈值 T,则设为 0。如果像素值大于等于阈值 T,则设为 255。
原创
发布博客 2025.02.21 ·
485 阅读 ·
16 点赞 ·
0 评论 ·
19 收藏

从训练到部署:基于YOLOv5和TensorRT的人脸口罩检测系统全流程实战指南(开源代码)

在之前的文章中,我们已经探讨了如何使用TensorRT加速YOLOv5模型的推理过程。如果你已经掌握了这些基础知识,那么现在是时候更进一步了!本文将带你深入实战,从零开始,一步步部署一个属于你自己的目标检测项目。无论你是刚入门深度学习,还是已经有一定经验的开发者,本文都将为你提供清晰的指引。我们将覆盖从数据标注与整理、模型训练、模型导出,到TensorRT序列化和部署推理的完整流程。通过这个项目,你将不仅学会如何搭建一个高效的目标检测系统,还能掌握如何在实
原创
发布博客 2025.02.21 ·
1951 阅读 ·
52 点赞 ·
2 评论 ·
20 收藏

使用 OpenCV 和 Mediapipe 库实现手指计数

Mediapipe 提供了一个高效的手部检测和关键点识别模型,能够检测 21 个手部关键点。本教程介绍了如何使用 OpenCV 和 Mediapipe 实现手指计数。通过 Mediapipe 提供的手部关键点,我们可以高效识别手指数量,并可扩展到更复杂的手势识别任务。
原创
发布博客 2025.02.19 ·
290 阅读 ·
6 点赞 ·
0 评论 ·
3 收藏

CUDA 编程入门

CUDA(Compute Unified Device Architecture)是 NVIDIA 开发的一种通用并行计算架构,允许开发者利用 GPU 进行高效的并行计算。它提供了 C/C++ 语言的扩展,使程序员能够编写在 GPU 上运行的并行代码。
原创
发布博客 2025.02.19 ·
354 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

TensorRT 多流并行优化教程

TensorRT 是 NVIDIA 提供的高性能深度学习推理库,广泛应用于低延迟和高吞吐的 AI 任务中。多流(multi-stream)并行是一种提高 GPU 计算效率的方法,适用于批量推理场景,可以显著提升吞吐量。本教程将介绍如何判断 TensorRT 推理的运行瓶颈,并基于瓶颈分析,使用多流并行进行优化。多流(multi-stream)并行是一种提高 GPU 资源利用率的方法,使用多个 CUDA Stream 并行执行不同的数据流,以减少计算与数据传输的串行化问题。
原创
发布博客 2025.02.19 ·
1098 阅读 ·
28 点赞 ·
0 评论 ·
9 收藏

yolov5-seg分割后处理流程

在 YOLOv5s-seg 模型中,分割后处理的目的是将模型的原始输出(包括检测框、类别概率和掩码系数)转换为最终的实例分割结果。
原创
发布博客 2025.02.17 ·
492 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

cap5:YoloV5分割任务的TensorRT部署指南(python版)

在前几章中,我们详细探讨了如何将分类模型ResNet和目标检测模型YOLOv5部署到TensorRT上,相信大家对TensorRT的模型部署已经有了初步的了解。接下来,本文将带领你进一步深入,探索如何将YOLOv5分割模型成功部署到TensorRT。
原创
发布博客 2025.02.17 ·
1462 阅读 ·
54 点赞 ·
3 评论 ·
11 收藏

YOLOv5 目标检测优化:降低误检与漏检

误检意味着模型检测到了不存在的目标,而漏检则指模型未能检测到真实存在的目标。通过合理的优化,可以大幅降低误检和漏检,提高 YOLOv5 在目标检测任务中的表现。如果背景复杂导致误检,可以减少强烈的数据增强,避免模型学到无关信息。如果漏检主要集中在某些特定角度或场景,可以增加相应的数据增强,例如。IoU 阈值,如 0.3-0.4,但不能太低,否则可能导致漏检。如果误检仍然较多,可以使用更大的 YOLOv5 变体,如。例如,检测小目标时,使用。,但不能过低,否则会引入过多误检。,但不能过高,否则可能导致漏检。
原创
发布博客 2025.02.15 ·
1661 阅读 ·
21 点赞 ·
0 评论 ·
15 收藏

伪装目标检测(Camouflaged Object Detection, COD)教程

伪装目标检测(Camouflaged Object Detection, COD)是一项计算机视觉任务,旨在识别和分割背景中难以察觉的目标,如动物伪装、隐形物体检测等。由于伪装目标通常与背景高度相似,这项任务比传统的目标检测更具挑战性。伪装目标检测是一个极具挑战性的计算机视觉任务,广泛应用于生态保护、军事隐身目标检测、医学影像等领域。深度学习技术的进步使得 COD 取得了显著提升,但仍然存在泛化能力、数据集规模等问题。COD10K 是目前规模最大的 COD 数据集,涵盖了多种场景,如水下、森林、城市等。
原创
发布博客 2025.02.15 ·
1451 阅读 ·
8 点赞 ·
0 评论 ·
34 收藏

YOLOv5-Seg 深度解析:与 YOLOv5 检测模型的区别

YOLOv5-Seg在YOLOv5目标检测基础上,增加了掩码分支,实现了实例分割。输出增加了mask,需要结合proto进行解码。训练方式与YOLOv5类似,推理时需要额外处理mask。适用于需要同时进行目标检测和实例分割的任务,如医学影像、自动驾驶等。如果你对YOLOv5-Seg有任何问题,欢迎交流!🚀。
原创
发布博客 2025.02.15 ·
1014 阅读 ·
16 点赞 ·
0 评论 ·
17 收藏

YOLOv5-Seg 完全指南:从训练到后处理

YOLOv5-Seg 采用机制,输出目标的边界框 (Bounding Box)、类别 (Class) 和 分割掩码 (Segmentation Mask)。它的核心思想是在目标检测的基础上增加一个额外的分割头,从而实现实例分割。主要特点:端到端实例分割:不需要额外的后处理步骤,直接输出目标的掩码。轻量级:相比 Mask R-CNN,推理速度更快,适合实时应用。与 YOLOv5 兼容:使用相同的数据格式和训练方式,迁移成本低。本教程详细介绍了YOLOv5-Seg的安装、训练、推理、输出格式和后处理。
原创
发布博客 2025.02.15 ·
872 阅读 ·
25 点赞 ·
0 评论 ·
22 收藏

cap4:YoloV5的TensorRT部署指南(python版)

在前几章中,我们深入探讨了如何将分类模型ResNet部署到TensorRT上,相信大家对TensorRT模型部署已经有了初步的了解。本文将带你进一步探索如何使用TensorRT部署YOLOv5检测模型。与分类模型相比,检测模型的部署流程虽然大体相似,但在后处理环节却更为复杂。这包括边界框(bbox)过滤、非极大值抑制(NMS)处理以及坐标转换等步骤。不过,如果你已经具备相关经验,这些步骤对你来说将会是小菜一碟。接下来,我们将一步步解析这些关键环节,帮助你轻松掌握YOLOv5的TensorRT部署技巧。
原创
发布博客 2025.02.14 ·
1212 阅读 ·
25 点赞 ·
2 评论 ·
27 收藏

基于opencv的HOG+角点匹配教程

HOG结合角点检测能够在图像匹配任务中提供高鲁棒性的特征描述。适用于目标识别、拼接和物体跟踪等应用。在计算机视觉任务中,特征匹配是目标识别、图像配准和物体跟踪的重要组成部分。角点是图像中具有显著变化的点,在特征匹配中至关重要。HOG的基本思想是计算局部区域内像素梯度的方向分布,并构建特征向量。HOG提取局部特征,而角点提供关键匹配点,可以使用。使用OpenCV实现Harris角点检测。
原创
发布博客 2025.02.14 ·
561 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

使用Opencv方法进行模板匹配

模板匹配(Template Matching)是一种基于图像处理的模式识别技术,主要用于在目标图像中查找与给定模板最匹配的区域。本文介绍了传统图像处理方法进行模板匹配的基本原理、常见算法及优化策略,并提供了 OpenCV 实现代码。虽然传统方法在简单场景下表现良好,但在光照变化、旋转、尺度变化等复杂场景下仍存在局限性,因此可结合深度学习方法进一步提高匹配效果。模板匹配的基本思想是通过滑动窗口的方式,在目标图像中搜索与模板最相似的区域,并利用某种相似性度量来评估匹配程度。
原创
发布博客 2025.02.14 ·
607 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

使用多种机器学习算法进行鸢尾花分类

sepal length(萼片长度,cm)sepal width(萼片宽度,cm)petal length(花瓣长度,cm)petal width(花瓣宽度,cm)Setosa(山鸢尾)Versicolor(变色鸢尾)Virginica(维吉尼亚鸢尾)
原创
发布博客 2025.02.14 ·
277 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏
加载更多