0. 前言
- 本文是基于知乎文章Android TensorFlow Lite实时人脸识别而写,本文更像是对知乎文章的观后总结,感兴趣可以阅读原文。
- 本文要完成一个离线的人脸识别应用,涉及到人脸检测和人脸识别两项主要技术。
1. 技术选择
1.1 人脸检测
人脸检测直接使用ML Kit,这是一个旨在Machine learning for mobile developers的库。
1.2 人脸识别
| 方案 | LFW精度 | 耗时 | 备注 |
|---|---|---|---|
| Adrian | 93% | 1/14 | 基于OpenCV |
| FaceNet | 99.63% | 3.5s(Pixel 3) | 不算实时性 |
| MobileFaceNet | 高 | 快 | 5.2MB(能实时性) |
综上,选择MobileFaceNet,这是TF实现的MobileFaceNet项目,经过该步骤,我们将训练得到一个人脸识别的模型。
在模式部署到Android时,使用TensorFlow Lite解决方案,将训练得到的模型经过优化压缩,适合在边缘设备部署。
2. 人脸识别模型的实现
正在训练中…
1289

被折叠的 条评论
为什么被折叠?



