首先计算机中图像是用矩阵存储的,所以在分析图像时,应当用矩阵的眼光来看待

- 1.RGB模式(百万种颜色)
- 2.CMYK模式(四种印刷色)
- 3.索引模式(256种颜色)
- 4.灰度模式(256级灰度)
- 5.位图模式(二值图,2种颜色)
彩色图像
上述中RGB、CMYK和索引模式都是来表示彩色图的。
RGB
RGB模式:基于发光体(电子产品)的色彩模式,常见的24bit色彩大概是1678万种,也就是常见的1600万真彩色。
彩色图像很常见,而最常见的表示方法是RGB格式:每个像素点由R、G、B三个数值共同表示,从而呈现出彩色。其中R、G、B是由不同的灰度级来描述。3字节(每个分量用1Byte储存,共24位)可表示一个像素,灰度代表该颜色的深浅,越大越深。

CMYK
基于印刷的色彩模式:cyan(青色),magenta(洋红),yellow(黄色),black(黑色)
CMYK与RGB的区别在于RGB想要某种颜色,RGB分量任意混合即可;但是在印刷业多次叠加刷墨,对印刷纸张非常不好,并且叠加的颜色不好控制,CMYK是一种减色来实现色彩搭配的,总之就是在印刷业应用非常广泛。
HSL色彩模式(与YUV相似)
即色相Hue、饱和度Saturation、亮度Lightness,其实发现RGB也是三个量控制一个像素点。实际上HSL相比RGB更符合人眼对颜色的识别,看下图就懂了:

- H:色相,表示一种颜色
- S:饱和度,表示该颜色的深浅,比如:浅蓝-淡蓝-蓝色-深蓝
- L:亮度,从图中可以看出,是从纯黑>纯白
人眼对色相、饱和度和亮度是敏感的,我们甚至可以通过手动设置三个分量来搜寻想要的颜色区域,比如肤色检测:很容易得到色相:橙黄色;饱和度:适中;亮度:适中。这些都可以通过参数来设置,但是如果是RGB模式,虽然也是可行的,但是不能直观想象出,不如HSL此类颜色模式来得直观感性。
Lab模式
- L*代表亮度
- a*代表从绿色到红色的分量
- b*代表从蓝色到黄色的分量

基于人对颜色的感觉来设计的,感知均匀:Lab分量变化幅度和人眼感受的颜色变化幅度一样。该模式也容易调整:想要调整亮度,只需要调节亮度分量L,调节色彩就分别调价ab分量
索引图
索引图像包含一个数据矩阵data和一个调色板矩阵map,数据矩阵可以使uint8,uint16或双精度类型,而调色板矩阵则总是一个m*3的双精度矩阵,当图像转换成索引模式时,系统自动归纳包含大多数的256种颜色表。主要用于网络发布,例如双方标准化map颜色索引图,只需要传输uint8的数据矩阵,接收方显示时解析即可。
灰度图
灰度图与彩色图不同,彩色图中一个像素通常用几个值同时表示,灰度图一个像素只有一个值:即亮度(也叫灰阶)。最常见的是256级灰阶,一个像素用1Byte表示,即0~255,当然像素值=0,表示这是个纯黑点,像素值=255,这是一个纯白点。

当然也有其他要求高精度的灰阶图,比如医学影像,会用更多的Byte来表示一个像素值。
二值图
相比较于灰度图有过度,二值图没有过渡,只有两种0(黑)、1(白)

如果要从灰度图转换到二值图,最简单的就是将0~255直接斩断,小于某值的置0,大于某值的置1,假设某置设为128,则:

5894

被折叠的 条评论
为什么被折叠?



