| item | 版本 |
|---|---|
| python | 3.7 |
| CUDA | 11.3 |
| CUDNN | 8.2.00 |
| Pytorch | 1.11 |
安装CUDA环境部分:1~3
安装Pytorch部分:
1、准备工具
- make:
sudo apt install make - gcc:
sudo apt install gcc
2、禁用第三方(nouveau)驱动
- 安装依赖:
sudo apt-get install dkms build-essential linux-headers-generic - 打开conf文件:
sudo vim /etc/modprobe.d/blacklist.conf
在末尾添加:blacklist nouveau blacklist lbm-nouveau options nouveau modeset=0 alias nouveau off alias lbm-nouveau off - 禁用第三方驱动:
echo options nouveau modeset=0 | sudo tee -a /etc/modprobe.d/nouveau-kms.conf - 更新并重启:
sudo update-initramfs -u
sudo reboot
3、下载并安装NVIDIA驱动
- 下载驱动:
wget https://cn.download.nvidia.com/XFree86/Linux-x86_64/470.82.00/NVIDIA-Linux-x86_64-470.82.00.run - 权限设置:
sudo chmod 775 NVIDIA-Linux-x86_64-470.82.00.run - 移除留存的驱动:
sudo apt-get remove nvidia* && sudo apt autoremove
基于run文件安装的驱动卸载:sudo bash XXX.run --uninstall - 安装驱动:
sudo bash NVIDIA-Linux-x86_64-470.82.00.run
4、安装CUDA、pytorch、pytorchvision
3080要求CUDA版本为11.3及以上:
(你需要先安装好Anconda或者Miniconda)
conda install pytorch torchvision cudatoolkit=11.3 -c pytorch
5、验证
验证pytorch能否使用cuda,通过torch.cuda.is_available()是不可靠的,通过torch.tensor(1).cuda()方式是可靠的,如果没有报错证明CUDA可用。
6、可能的Bug
6.1、ValueError: signal number 32 out of range
Exception in Thread: ValueError: signal number 32 out of range
6.2 经常性nvidia-smi命令失效
参考:https://blog.csdn.net/u013685264/article/details/121903540
7、卸载该Nvidia驱动
实际上和安装命令差不多,只不过多了--uninstall
sudo bash NVIDIA-Linux-x86_64-470.82.00.run --uninstall
3031

被折叠的 条评论
为什么被折叠?



