嵌入注意力机制的多尺度深度可分离表情识别--2021.宋玉琴

主要解决几个问题:1)深度网络带来的梯度爆炸或弥散问题;2)特征提取效果不好;3)数据存在冗余或噪声(多余和无用的数据)

本文的解决办法:1)残差链接;2)Inception式结构进行多尺度特征提取;3)CBAM注意力模块提升有效特征的表达,削弱噪音影响。

亮点在于:1)Inception中的多尺度卷积核使用多层深度可分离卷积卷积替换,保证感受野的同时降低参数量;2)将CBAM嵌入到Inception每个分支中去,提升每个尺度的特征权重。

1、表情识别网络模型

1.1 CBAM

在这里插入图片描述
在这里插入图片描述
需要注意的是,这里使用sigmoid(有些注意力使用的softmax)

1.2 嵌入 CBAM 的多尺度深度可分离卷积残差块

在这里插入图片描述
可以看出,不考虑通道,3x3DW的感受野=3x3Conv的感受野。所以上图四个分支就等效于普通卷积的3x3、5x5、7x7、9x9,实现了轻量级的多尺度特征提取结构。

除此之外还有CBAM加强每个尺度提取的特征图,剔除冗余特征,提升特征的有效性

1.3 表情识别网络总体模型

首先一个3x3x64的卷积作为stem layer。

后面跟上8个Basic Block(注意Basic Block-1实际上是两个Basic Block组成,其他类同),每层的输出通道数:64、64、128、128、512、512、256、256、512、512。随后跟上全局均值池化将512通道的特征图转换成512向量,然后通过一个FC层输出7分类数据。总体结构上就是[StemLayer, BasicBlocks, GAP, FC]

整体结构如表和图4所示(特征图经过Basic Block-n的运算,shape不变,但是在Basic Block-n之间可以看到特征图尺寸减半、通道加倍,这里的操作没有说明)。
在这里插入图片描述

2、实验

2.1 FER2013

在FER2013数据集上使用TenCrop精度。实验共迭代 300 次,初始学习率设为 0.01,批量
大小设为 32,50 次迭代后,每 8 轮迭代学习率的衰减为之前的 0.8 倍(感觉很多论文都是这个设置)。
最终得到73.89%的准确度,混淆矩阵如下图:
在这里插入图片描述

2.2 CK+

在 CK+数据集上训练时,因其数据较少,故采用十折交叉验证,实验以 9:1 的比例将数据集分为训练集和测试集,本文算法在 CK+数据集得到 94.47%的准确度。
在这里插入图片描述
在这里插入图片描述

2.3 消融实验

在这里插入图片描述
ABCD分别代表Inception结构中的4个分支,n-CBAM代表在n分支上添加CBAM模块。

可以看出添加了B分支(等同5x5卷积)提升最大,可能是FER2013数据集的图像尺寸比较小(48x48),3x3+5x5分支已经能表征需要的多尺度。CBAM也是在分支B上提升最大。

3、结论

利用残差结构和深度可分离卷积堆叠设计了一种类Inception的多分支结构,并且在每个分支上使用CBAM强化特征。实现了保证感受野的轻量级多分支结构,并获得了很好的效果。

从消融实验分支B的提升效果看出,多分支确实能够提高特征提取能力,这可能和表情识别需要局部和全局信息判断有关

深度可分离卷积(Depthwise Separable Convolution),也被称为空间分块卷积(Spatial Separable Convolution),是一种对传统卷积操作的简化版本,它将标准卷积分为两个步骤:首先进行深度卷积(Depthwise Convolution),这个操作只在一个通道内应用滤波器,然后进行点卷积(Pointwise Convolution),即每个输入通道都通过一个一维滤波器进行变换。 在残差网络(Residual Network, ResNet)中,深度可分离卷积可以作为一种有效的构建块来增强模型的性能。残差网络的核心思想是在网络结构中引入跳跃连接(Skip Connections),使得信息可以直接从输入层传递到更深的层,解决了深层网络训练过程中的梯度消失问题。当将深度可分离卷积集成到残差模块(Residual Block)时,通常的做法如下: 1. **替代标准卷积**:在一些残差块的某个位置,替换传统的卷积层为深度可分离卷积,这样既减少了计算量,又保持了特征的空间尺寸不变。 2. **添加点卷积**:深度卷积后的结果会与前一层的输出相加,再经过一个1x1的点卷积进行通道间的转换,融合来自不同层的信息。 3. **整合残差连接**:结合跳跃连接,输入不仅与经过深度可分离卷积处理后的特征相加,还保留原始输入,保证了网络的平滑学习路径。 这种设计有助于提升网络效率,同时在一定程度上保持了残差网络的有效性和易训练性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是一个对称矩阵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值