Glow introduce

文章探讨了在处理高维随机向量X时,如何利用带有参数θ的模型pθ(X)进行建模。通过对独立同分布的数据集D进行分析,目标是最小化log似然函数。文章提到了基于流的生成模型,其中潜在变量z遵循简单的概率分布,如球形高斯,而数据x通过可逆函数gθ(z)与z关联。这种可逆变换序列,即(正则化)流,用于描述x和z之间的关系。
摘要由CSDN通过智能技术生成

X X X是一个真实但分布未知的高维随机向量,记为 X ∼ p ∗ ( X ) X\sim p^∗(X) Xp(X)。我们收集了独立同分布的数据集 D D D,我们选择带有参数 θ θ θ的模型 p θ ( X ) p_θ (X) pθ(X),假设数据 X X X是离散的,则log-likehood(log似然)的目的等效于最小化下面的公示:
L ( D ) = 1 N ∑ i = 1 N ( − l o g p θ ( X ( i ) ) ) L(D)=\frac{1}{N}\sum_{i=1}^{N}(-logp_\theta(X^{(i)})) L(D)=N1i=1N(logpθ(X(i)))

大多数的基于流的生成模型,其过程可以定义为:
z ∼ p θ ( z ) z\sim p_θ(z) zpθ(z)
x = g θ ( z ) x=g_θ (z) x=gθ(z)
z z z是潜在变量, p θ ( z ) p_θ (z) pθ(z)是一个简单的概率密度,比如球形高斯: p θ ( z ) = N ( z ; 0 , I ) p_θ (z)=N(z;0,I) pθ(z)=N(z;0,I)

函数 g θ g_θ gθ是可逆的,也叫双射,给一个数据 x x x,潜变量可以通过 z = f θ ( x ) = g θ − 1 ( x ) z=f_θ (x)=g_θ^{−1} (x) z=fθ(x)=gθ1(x)

为了简便,下面我们将省略下标 θ θ θ

我们假设函数 f f f由一系列的转换组成: f = f 1 ∘ f 2 ∘ ⋅ ⋅ ⋅ ∘ f n f=f_1 \circ f_2 \circ ··· \circ f_n f=f1f2⋅⋅⋅fn,如此 x x x z z z的关系可以描述为:
在这里插入图片描述

这样一个可逆变换的序列也可以被称为(正则化)流,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是一个对称矩阵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值