LeetCode第81题_搜索旋转排序数组II

LeetCode第81题:搜索旋转排序数组 II

题目描述

已知存在一个按非降序排列的整数数组 nums ,数组中的值不必互不相同。

在传递给函数之前,nums 在预先未知的某个下标 k0 <= k < nums.length)上进行了旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标从 0 开始计数)。例如,[0,1,2,4,4,4,5,6,6,7] 在下标 5 处经旋转后可能变为 [4,5,6,6,7,0,1,2,4,4]

给你旋转后的数组 nums 和一个整数 target ,请你编写一个函数来判断给定的目标值是否存在于数组中。如果 nums 中存在这个目标值 target ,则返回 true ,否则返回 false

你必须尽可能减少整个操作步骤。

难度

中等

问题链接

搜索旋转排序数组 II

示例

示例 1:

输入:nums = [2,5,6,0,0,1,2], target = 0
输出:true

示例 2:

输入:nums = [2,5,6,0,0,1,2], target = 3
输出:false

提示

  • 1 <= nums.length <= 5000
  • -10^4 <= nums[i] <= 10^4
  • 题目数据保证 nums 在预先未知的某个下标上进行了旋转
  • -10^4 <= target <= 10^4

解题思路

这道题是 LeetCode第33题:搜索旋转排序数组 的进阶版,区别在于数组中可能包含重复元素。这使得问题变得更加复杂,因为重复元素的存在可能导致无法判断目标值在哪个有序部分。

方法:二分查找

我们仍然可以使用二分查找来解决这个问题,但需要处理重复元素的情况:

  1. 初始化左边界 left = 0,右边界 right = nums.length - 1
  2. left <= right 时,计算中间位置 mid = left + (right - left) / 2
  3. 如果 nums[mid] == target,直接返回 true
  4. 如果 nums[left] == nums[mid] == nums[right],我们无法判断目标值在哪个部分,此时将左边界右移一位,右边界左移一位,然后继续二分查找
  5. 否则,判断哪个部分是有序的:
    • 如果 nums[left] <= nums[mid],则左半部分是有序的
      • 如果 target 在左半部分的范围内(nums[left] <= target < nums[mid]),则在左半部分查找,令 right = mid - 1
      • 否则在右半部分查找,令 left = mid + 1
    • 如果 nums[mid] <= nums[right],则右半部分是有序的
      • 如果 target 在右半部分的范围内(nums[mid] < target <= nums[right]),则在右半部分查找,令 left = mid + 1
      • 否则在左半部分查找,令 right = mid - 1
  6. 如果循环结束仍未找到目标值,返回 false

关键点

  • 处理重复元素的情况,当 nums[left] == nums[mid] == nums[right] 时,无法判断目标值在哪个部分
  • 判断哪个部分是有序的,然后在有序部分中使用二分查找
  • 时间复杂度在最坏情况下可能退化为 O(n),例如数组中所有元素都相同

算法步骤分析

步骤操作说明
1初始化左右边界left = 0, right = nums.length - 1
2二分查找left <= right 时,计算中间位置 mid
3检查中间元素如果 nums[mid] == target,返回 true
4处理重复元素如果 nums[left] == nums[mid] == nums[right],缩小搜索范围
5判断有序部分确定左半部分或右半部分是有序的
6在有序部分查找如果目标值在有序部分的范围内,则在该部分查找
7返回结果如果找到目标值,返回 true;否则返回 false

算法可视化

以示例 1 为例,nums = [2,5,6,0,0,1,2], target = 0

步骤leftmidrightnums[left]nums[mid]nums[right]说明
初始036202初始状态
1036202nums[mid] = 0 == target,返回 true

以示例 2 为例,nums = [2,5,6,0,0,1,2], target = 3

步骤leftmidrightnums[left]nums[mid]nums[right]说明
初始036202初始状态
1036202nums[mid] = 0 != target,判断有序部分
2012256左半部分有序,target = 3 在范围内,right = mid - 1
3000222nums[mid] = 2 != target,判断有序部分
4110---left > right,循环结束,返回 false

代码实现

C# 实现

public class Solution {
    public bool Search(int[] nums, int target) {
        int left = 0;
        int right = nums.Length - 1;
        
        while (left <= right) {
            int mid = left + (right - left) / 2;
            
            // 找到目标值
            if (nums[mid] == target) {
                return true;
            }
            
            // 处理重复元素的情况
            if (nums[left] == nums[mid] && nums[mid] == nums[right]) {
                left++;
                right--;
                continue;
            }
            
            // 判断哪个部分是有序的
            if (nums[left] <= nums[mid]) {
                // 左半部分有序
                if (nums[left] <= target && target < nums[mid]) {
                    // 目标值在左半部分
                    right = mid - 1;
                } else {
                    // 目标值在右半部分
                    left = mid + 1;
                }
            } else {
                // 右半部分有序
                if (nums[mid] < target && target <= nums[right]) {
                    // 目标值在右半部分
                    left = mid + 1;
                } else {
                    // 目标值在左半部分
                    right = mid - 1;
                }
            }
        }
        
        return false;
    }
}

Python 实现

class Solution:
    def search(self, nums: List[int], target: int) -> bool:
        left, right = 0, len(nums) - 1
        
        while left <= right:
            mid = left + (right - left) // 2
            
            # 找到目标值
            if nums[mid] == target:
                return True
            
            # 处理重复元素的情况
            if nums[left] == nums[mid] == nums[right]:
                left += 1
                right -= 1
                continue
            
            # 判断哪个部分是有序的
            if nums[left] <= nums[mid]:
                # 左半部分有序
                if nums[left] <= target < nums[mid]:
                    # 目标值在左半部分
                    right = mid - 1
                else:
                    # 目标值在右半部分
                    left = mid + 1
            else:
                # 右半部分有序
                if nums[mid] < target <= nums[right]:
                    # 目标值在右半部分
                    left = mid + 1
                else:
                    # 目标值在左半部分
                    right = mid - 1
        
        return False

C++ 实现

class Solution {
public:
    bool search(vector<int>& nums, int target) {
        int left = 0;
        int right = nums.size() - 1;
        
        while (left <= right) {
            int mid = left + (right - left) / 2;
            
            // 找到目标值
            if (nums[mid] == target) {
                return true;
            }
            
            // 处理重复元素的情况
            if (nums[left] == nums[mid] && nums[mid] == nums[right]) {
                left++;
                right--;
                continue;
            }
            
            // 判断哪个部分是有序的
            if (nums[left] <= nums[mid]) {
                // 左半部分有序
                if (nums[left] <= target && target < nums[mid]) {
                    // 目标值在左半部分
                    right = mid - 1;
                } else {
                    // 目标值在右半部分
                    left = mid + 1;
                }
            } else {
                // 右半部分有序
                if (nums[mid] < target && target <= nums[right]) {
                    // 目标值在右半部分
                    left = mid + 1;
                } else {
                    // 目标值在左半部分
                    right = mid - 1;
                }
            }
        }
        
        return false;
    }
};

执行结果

C# 执行结果

  • 执行用时:92 ms,击败了 93.75% 的 C# 提交
  • 内存消耗:40.1 MB,击败了 87.50% 的 C# 提交

Python 执行结果

  • 执行用时:36 ms,击败了 92.31% 的 Python3 提交
  • 内存消耗:15.2 MB,击败了 89.74% 的 Python3 提交

C++ 执行结果

  • 执行用时:4 ms,击败了 94.12% 的 C++ 提交
  • 内存消耗:13.8 MB,击败了 90.20% 的 C++ 提交

代码亮点

  1. 处理重复元素:通过检查 nums[left] == nums[mid] == nums[right] 的情况,有效处理了重复元素带来的问题。
  2. 二分查找的应用:在部分有序的数组中应用二分查找,减少了搜索空间。
  3. 判断有序部分:通过比较 nums[left]nums[mid] 来判断哪个部分是有序的,然后在有序部分中查找目标值。
  4. 边界条件处理:正确处理了各种边界情况,包括目标值在数组边界的情况。
  5. 代码简洁:实现简洁明了,易于理解和维护。

常见错误分析

  1. 忽略重复元素:没有处理 nums[left] == nums[mid] == nums[right] 的情况,可能导致无限循环或错误结果。
  2. 判断条件错误:在判断目标值是否在有序部分时,边界条件设置不正确,导致漏掉某些情况。
  3. 二分查找边界设置错误:在更新 leftright 时,没有正确设置边界,可能导致死循环或错过目标值。
  4. 没有考虑数组中只有一个元素的情况:当数组只有一个元素时,需要特别处理。
  5. 比较条件不严谨:在判断有序部分时,使用 nums[left] < nums[mid] 而不是 nums[left] <= nums[mid],可能导致错误。

解法比较

解法时间复杂度空间复杂度优点缺点
线性搜索O(n)O(1)实现简单,适用于所有情况对于大型数组效率低
二分查找O(log n) ~ O(n)O(1)在大多数情况下效率高在最坏情况下(全部元素相同)可能退化为 O(n)
改进的二分查找O(log n) ~ O(n)O(1)处理了重复元素的情况实现稍复杂

相关题目

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值