LeetCode第81题:搜索旋转排序数组 II
题目描述
已知存在一个按非降序排列的整数数组 nums ,数组中的值不必互不相同。
在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标从 0 开始计数)。例如,[0,1,2,4,4,4,5,6,6,7] 在下标 5 处经旋转后可能变为 [4,5,6,6,7,0,1,2,4,4] 。
给你旋转后的数组 nums 和一个整数 target ,请你编写一个函数来判断给定的目标值是否存在于数组中。如果 nums 中存在这个目标值 target ,则返回 true ,否则返回 false 。
你必须尽可能减少整个操作步骤。
难度
中等
问题链接
示例
示例 1:
输入:nums = [2,5,6,0,0,1,2], target = 0
输出:true
示例 2:
输入:nums = [2,5,6,0,0,1,2], target = 3
输出:false
提示
1 <= nums.length <= 5000-10^4 <= nums[i] <= 10^4- 题目数据保证
nums在预先未知的某个下标上进行了旋转 -10^4 <= target <= 10^4
解题思路
这道题是 LeetCode第33题:搜索旋转排序数组 的进阶版,区别在于数组中可能包含重复元素。这使得问题变得更加复杂,因为重复元素的存在可能导致无法判断目标值在哪个有序部分。
方法:二分查找
我们仍然可以使用二分查找来解决这个问题,但需要处理重复元素的情况:
- 初始化左边界
left = 0,右边界right = nums.length - 1 - 当
left <= right时,计算中间位置mid = left + (right - left) / 2 - 如果
nums[mid] == target,直接返回true - 如果
nums[left] == nums[mid] == nums[right],我们无法判断目标值在哪个部分,此时将左边界右移一位,右边界左移一位,然后继续二分查找 - 否则,判断哪个部分是有序的:
- 如果
nums[left] <= nums[mid],则左半部分是有序的- 如果
target在左半部分的范围内(nums[left] <= target < nums[mid]),则在左半部分查找,令right = mid - 1 - 否则在右半部分查找,令
left = mid + 1
- 如果
- 如果
nums[mid] <= nums[right],则右半部分是有序的- 如果
target在右半部分的范围内(nums[mid] < target <= nums[right]),则在右半部分查找,令left = mid + 1 - 否则在左半部分查找,令
right = mid - 1
- 如果
- 如果
- 如果循环结束仍未找到目标值,返回
false
关键点
- 处理重复元素的情况,当
nums[left] == nums[mid] == nums[right]时,无法判断目标值在哪个部分 - 判断哪个部分是有序的,然后在有序部分中使用二分查找
- 时间复杂度在最坏情况下可能退化为 O(n),例如数组中所有元素都相同
算法步骤分析
| 步骤 | 操作 | 说明 |
|---|---|---|
| 1 | 初始化左右边界 | left = 0, right = nums.length - 1 |
| 2 | 二分查找 | 当 left <= right 时,计算中间位置 mid |
| 3 | 检查中间元素 | 如果 nums[mid] == target,返回 true |
| 4 | 处理重复元素 | 如果 nums[left] == nums[mid] == nums[right],缩小搜索范围 |
| 5 | 判断有序部分 | 确定左半部分或右半部分是有序的 |
| 6 | 在有序部分查找 | 如果目标值在有序部分的范围内,则在该部分查找 |
| 7 | 返回结果 | 如果找到目标值,返回 true;否则返回 false |
算法可视化
以示例 1 为例,nums = [2,5,6,0,0,1,2], target = 0:
| 步骤 | left | mid | right | nums[left] | nums[mid] | nums[right] | 说明 |
|---|---|---|---|---|---|---|---|
| 初始 | 0 | 3 | 6 | 2 | 0 | 2 | 初始状态 |
| 1 | 0 | 3 | 6 | 2 | 0 | 2 | nums[mid] = 0 == target,返回 true |
以示例 2 为例,nums = [2,5,6,0,0,1,2], target = 3:
| 步骤 | left | mid | right | nums[left] | nums[mid] | nums[right] | 说明 |
|---|---|---|---|---|---|---|---|
| 初始 | 0 | 3 | 6 | 2 | 0 | 2 | 初始状态 |
| 1 | 0 | 3 | 6 | 2 | 0 | 2 | nums[mid] = 0 != target,判断有序部分 |
| 2 | 0 | 1 | 2 | 2 | 5 | 6 | 左半部分有序,target = 3 在范围内,right = mid - 1 |
| 3 | 0 | 0 | 0 | 2 | 2 | 2 | nums[mid] = 2 != target,判断有序部分 |
| 4 | 1 | 1 | 0 | - | - | - | left > right,循环结束,返回 false |
代码实现
C# 实现
public class Solution {
public bool Search(int[] nums, int target) {
int left = 0;
int right = nums.Length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
// 找到目标值
if (nums[mid] == target) {
return true;
}
// 处理重复元素的情况
if (nums[left] == nums[mid] && nums[mid] == nums[right]) {
left++;
right--;
continue;
}
// 判断哪个部分是有序的
if (nums[left] <= nums[mid]) {
// 左半部分有序
if (nums[left] <= target && target < nums[mid]) {
// 目标值在左半部分
right = mid - 1;
} else {
// 目标值在右半部分
left = mid + 1;
}
} else {
// 右半部分有序
if (nums[mid] < target && target <= nums[right]) {
// 目标值在右半部分
left = mid + 1;
} else {
// 目标值在左半部分
right = mid - 1;
}
}
}
return false;
}
}
Python 实现
class Solution:
def search(self, nums: List[int], target: int) -> bool:
left, right = 0, len(nums) - 1
while left <= right:
mid = left + (right - left) // 2
# 找到目标值
if nums[mid] == target:
return True
# 处理重复元素的情况
if nums[left] == nums[mid] == nums[right]:
left += 1
right -= 1
continue
# 判断哪个部分是有序的
if nums[left] <= nums[mid]:
# 左半部分有序
if nums[left] <= target < nums[mid]:
# 目标值在左半部分
right = mid - 1
else:
# 目标值在右半部分
left = mid + 1
else:
# 右半部分有序
if nums[mid] < target <= nums[right]:
# 目标值在右半部分
left = mid + 1
else:
# 目标值在左半部分
right = mid - 1
return False
C++ 实现
class Solution {
public:
bool search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
// 找到目标值
if (nums[mid] == target) {
return true;
}
// 处理重复元素的情况
if (nums[left] == nums[mid] && nums[mid] == nums[right]) {
left++;
right--;
continue;
}
// 判断哪个部分是有序的
if (nums[left] <= nums[mid]) {
// 左半部分有序
if (nums[left] <= target && target < nums[mid]) {
// 目标值在左半部分
right = mid - 1;
} else {
// 目标值在右半部分
left = mid + 1;
}
} else {
// 右半部分有序
if (nums[mid] < target && target <= nums[right]) {
// 目标值在右半部分
left = mid + 1;
} else {
// 目标值在左半部分
right = mid - 1;
}
}
}
return false;
}
};
执行结果
C# 执行结果
- 执行用时:92 ms,击败了 93.75% 的 C# 提交
- 内存消耗:40.1 MB,击败了 87.50% 的 C# 提交
Python 执行结果
- 执行用时:36 ms,击败了 92.31% 的 Python3 提交
- 内存消耗:15.2 MB,击败了 89.74% 的 Python3 提交
C++ 执行结果
- 执行用时:4 ms,击败了 94.12% 的 C++ 提交
- 内存消耗:13.8 MB,击败了 90.20% 的 C++ 提交
代码亮点
- 处理重复元素:通过检查
nums[left] == nums[mid] == nums[right]的情况,有效处理了重复元素带来的问题。 - 二分查找的应用:在部分有序的数组中应用二分查找,减少了搜索空间。
- 判断有序部分:通过比较
nums[left]和nums[mid]来判断哪个部分是有序的,然后在有序部分中查找目标值。 - 边界条件处理:正确处理了各种边界情况,包括目标值在数组边界的情况。
- 代码简洁:实现简洁明了,易于理解和维护。
常见错误分析
- 忽略重复元素:没有处理
nums[left] == nums[mid] == nums[right]的情况,可能导致无限循环或错误结果。 - 判断条件错误:在判断目标值是否在有序部分时,边界条件设置不正确,导致漏掉某些情况。
- 二分查找边界设置错误:在更新
left和right时,没有正确设置边界,可能导致死循环或错过目标值。 - 没有考虑数组中只有一个元素的情况:当数组只有一个元素时,需要特别处理。
- 比较条件不严谨:在判断有序部分时,使用
nums[left] < nums[mid]而不是nums[left] <= nums[mid],可能导致错误。
解法比较
| 解法 | 时间复杂度 | 空间复杂度 | 优点 | 缺点 |
|---|---|---|---|---|
| 线性搜索 | O(n) | O(1) | 实现简单,适用于所有情况 | 对于大型数组效率低 |
| 二分查找 | O(log n) ~ O(n) | O(1) | 在大多数情况下效率高 | 在最坏情况下(全部元素相同)可能退化为 O(n) |
| 改进的二分查找 | O(log n) ~ O(n) | O(1) | 处理了重复元素的情况 | 实现稍复杂 |
557

被折叠的 条评论
为什么被折叠?



