Dynamic SLAM: The Need For Speed


  提出了一种无需模型先验的,利用语义信息实现动态物体检测和定位的视觉SLAM算法。算法在仿真,模拟和真实数据集上证明了有效性。

整体流程

在这里插入图片描述

  文中只是简要介绍了流程,在语义分割之后,对物体进行单独跟踪和建模。

问题和优化过程建模

  文章的重点内容是介绍对于动态SLA问题的建模和如何使用因子图进行优化。

  • 建立了基于刚体上点匹配的位姿估计和刚体运动估计。
  • 优化函数分为三项,路标点,位姿和刚体运行状态。
  • 在因子图优化中,城市环境刚体运动状态节点随时间变化,高速公路环境中刚体运动状态不变。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值