TensorFlow2.3 安装cpu版本报错 TensorFlow2.3 安装cpu 版本报错问题:1.使用anaconda 创建环境conda create -n tensorflow2.3 python=3.72.直接下载安装cpu版本方式1:conda install --channel https://conda.anaconda.org/anaconda tensorflow==2.3.0这个路径安装比较慢, 但是安装完不会报错方式2:或者 不指定地址直接使用国内镜像下载 conda install tensor
linux 安装 jupyter报错解决 直接 pip install jupyter 安装报以下错误ERROR: Could not find a version that satisfies the requirement jupyterlab-widgets>=1.0.0; python_version >= "3.5" (from ipywidgets->jupyter) (from versions: 0.3.2, 0.3.3, 0.4.0, 0.4.1, 0.5.0, 0.6.0, 0.6.1, 0.6.2,
pyspark调用sklearn相关模型测试 **Pyspark 调用sklearn训练好的模型时,关键是注意数据类型的转换, numpy数据类型和结构转化为pyspark可以识别的.主要是通过广播,将模型广播到executor,进行运算;同理,其他python库的相关模型也可以在pyspark上进行分布式运算.**1.基于rdd调用sklearn训练好的模型from pyspark import SparkContext, SparkConffrom pyspark.ml.linalg import Vectorsfrom pyspa
如何在Apache Pyspark中运行Scikit-learn模型 原文地址: https://baijiahao.baidu.com/s?id=1654340799888656128&wfr=spider&for=pc在本文中,我们将了解如何在Apache Pyspark中运行Scikit-learn模型,并讨论有关每个步骤的细节。如果您已经准备好了机器学习模型,则可以直接跳到“ pyspark wrapper”部分,也可以通过以下步骤创建一个简单的scikit learn机器学习模型。scikit learn机器学习模型:我们使用Python创建
spark TF-IDf CountVectorizer单词对应索引 * CountVectorizer和CountVectorizerModel旨在帮助将文本文档的集合转换为令牌计数的向量。 * 当先验字典不可用时,CountVectorizer可用作估计器以提取词汇表并生成CountVectorizerModel。 * 该模型为词汇表上的文档生成稀疏向量表示方式,然后可以将其传递给其他算法,例如LDA。 * * 在拟合过程中,CountVectorizer将选择整个语料库中按词频排列的前vocabSize词。 * 可选参数minDF还通过指定一个术语.
SHELL打印两个日期之间的日期 [root@umout shell]# cat date_to_date.sh THIS_PATH=$(cd `dirname $0`;)cd $THIS_PATH##要求传入的数据格式为yyyyMMdd的两个开始和结束参数,如20170201 20170310start_input=$1end_input=$2##将输入的日期转为的时间戳格式startDate=`date -d "${start_input}" +%s`endDate=`date -d "${end_input}"
Spark Streaming‘s Kafka libraries not found in class path 报错Spark Streaming’s Kafka libraries not found in class path. Try one of the following.缺少spark-streaming-kafka-0-8:2.4.3 …该jar包jar包的下载地址将下载的jar包放在/opt/anaconda3/envs/python37/lib/python3.7/site-packages/pyspark/jars目录下如果没有使用anaconda, 而是pip3但是不知道放哪
报错:It appears that you are attempting to reference SparkContext from a broadcast variable, action 报错_pickle.PicklingError: Could not serialize object: Exception: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transformation. SparkContext can only be used on the driver, not in code that it run on wor
pyspark中rdd 和dataframe的各种join函数和crossJoin函数 1.数据from pyspark import SparkContext, SparkConf, Rowfrom pyspark.sql import SparkSessionconf=SparkConf().setAppName("test").setMaster("local[*]")sc=SparkContext(conf=conf)spark=SparkSession(sc)# Input data: Each row is a bag of words with a ID.df1 =
Python使用pandas读取hdfs文件 代码如下 from pyhdfs import HdfsClient client = HdfsClient(hosts='192.168.1.1:50070') # TypeError: cannot use a string pattern on a bytes-like object #从hdfs中读取文件 file = client.open("/data/movielens/train/ra.train") #获取内容
pycharm中配置spark 在本机上安装和配置好spark环境2.之后在setings中 项目结构中 导入py4j和pyspark的包包路径为C:\spark-2.2.0-bin-hadoop2.6\python\lib3.配置环境4.配置成功
linux如何安装setup.py程序 这里写自定义目录标题linux中卸载程序:[dd@master platform]$ pip3 uninstall platform在setup.py文件夹下第一步:[dd@master platform]$ python3 setup.py build第二步:[dd@master platform]$ python3 setup.py install安装完成
IDEA不能识别虚拟机地址 IDEA不能识别虚拟机地址IDEA报错原因复制别人的虚拟机,其hostname与C:\Windows\System32\drivers\etc\hosts中的名字不一样造成的