Leetcode 题解 - 位运算(6-9) :不用额外变量交换两个整数

6.不用额外变量交换两个整数

程序员代码面试指南 :P317

a = a ^ b;
b = a ^ b;
a = a ^ b;

[LeetCode] Power of Two 判断2的次方数

 

Given an integer, write a function to determine if it is a power of two.

Example 1:

Input: 1
Output: true

Example 2:

Input: 16
Output: true

Example 3:

Input: 218
Output: false

 

这道题让我们判断一个数是否为2的次方数,而且要求时间和空间复杂度都为常数,那么对于这种玩数字的题,我们应该首先考虑位操作 Bit Operation。在LeetCode中,位操作的题有很多,比如比如 Repeated DNA SequencesSingle Number,  Single Number II Grey Code Reverse BitsBitwise AND of Numbers RangeNumber of 1 Bits 和 Divide Two Integers 等等。那么我们来观察下2的次方数的二进制写法的特点:

1     2       4         8         16   ....

1    10    100    1000    10000 ....

那么我们很容易看出来2的次方数都只有一个1,剩下的都是0,所以我们的解题思路就有了,我们只要每次判断最低位是否为1,然后向右移位,最后统计1的个数即可判断是否是2的次方数,代码如下:

class Solution {
    public boolean isPowerOfTwo(int n) {
        if(n == 0)
            return false;
        int res = 0;
        while(n > 0){
            if((n & 1) == 1)
                res++;
            n = n >> 1;
        }
        return  res == 1;
    }
}

 

道题还有一个技巧,如果一个数是2的次方数的话,根据上面分析,那么它的二进数必然是最高位为1,其它都为0,那么如果此时我们减1的话,则最高位会降一位,其余为0的位现在都为变为1,那么我们把两数相与,就会得到0,用这个性质也能来解题,而且只需一行代码就可以搞定,如下所示:

public boolean isPowerOfTwo(int n) {
    return n > 0 && (n & (n - 1)) == 0;
}


public boolean isPowerOfTwo(int n) {
    return n > 0 && Integer.bitCount(n) == 1;
}

[LeetCode] Power of Four 判断4的次方数

 

Given an integer (signed 32 bits), write a function to check whether it is a power of 4.

Example:
Given num = 16, return true. Given num = 5, return false.

Follow up: Could you solve it without loops/recursion?

Credits:
Special thanks to @yukuairoy for adding this problem and creating all test cases.

 

这道题让我们判断一个数是否为4的次方数,那么最直接的方法就是不停的除以4,看最终结果是否为1,参见代码如下:

 

解法一:

class Solution {
    public boolean isPowerOfFour(int n) {
        if(n == 0)
            return false;
        while( n % 4 == 0)
            n = n >> 2;
        return n == 1;
    }
}

下面这种方法是网上比较流行的一种解法,思路很巧妙,首先根据Power of Two中的解法二,我们知道num & (num - 1)可以用来判断一个数是否为2的次方数,更进一步说,就是二进制表示下,只有最高位是1,那么由于是2的次方数,不一定是4的次方数,比如8,所以我们还要其他的限定条件,我们仔细观察可以发现,4的次方数的最高位的1都是计数位,那么我们只需与上一个数(0x55555555) <==> 1010101010101010101010101010101,如果得到的数还是其本身,则可以肯定其为4的次方数:

 

解法二:

class Solution {
    public boolean isPowerOfFour(int num) {
        if(num <= 0)
            return false;
        return ((num & (num - 1)) == 0) && ((num & 0x55555555) == num) ;
    }
}

或者我们在确定其是2的次方数了之后,发现只要是4的次方数,减1之后可以被3整除,所以可以写出代码如下:

 

解法三:

class Solution {
    public boolean isPowerOfFour(int num) {
        if(num <= 0)
            return false;
        return ((num & (num - 1)) == 0) && ((num-1) % 3 == 0) ;
    }
}

[LeetCode] Binary Number with Alternating Bits 有交替位的二进制数

 

Given a positive integer, check whether it has alternating bits: namely, if two adjacent bits will always have different values.

Example 1:

Input: 5
Output: True
Explanation:
The binary representation of 5 is: 101

 

Example 2:

Input: 7
Output: False
Explanation:
The binary representation of 7 is: 111.

 

Example 3:

Input: 11
Output: False
Explanation:
The binary representation of 11 is: 1011.

 

Example 4:

Input: 10
Output: True
Explanation:
The binary representation of 10 is: 1010.

下面这种解法写的更加简洁了,我们不需要用if条件来判断,而是可以通过‘亦或’1的方式来将0和1互换,当然我们也可以通过d = 1 - d 来达到同样的效果,但还是写成‘亦或’1比较叼,while循环的条件是最低位等于d,而d不停的在0和1之间切换,n每次也向右平移一位,这样能交替检测0和1,循环退出后,如果n为0,则返回true,反之则返回false,参见代码如下:

 

解法二:

复制代码

class Solution {
public:
    bool hasAlternatingBits(int n) {
        int d = n & 1;
        while ((n & 1) == d) {
            d ^= 1;
            n >>= 1;
        }
        return n == 0;
    }
};

class Solution {
    public boolean hasAlternatingBits(int n) {
        int cp = n & 1;
        n = n >> 1;
        while(n > 0){
            int num = n & 1;
            if(num == cp)
                return false;
            cp = num;
            n = n >> 1;
        }
        return true;
    }
}

class Solution {
    public boolean hasAlternatingBits(int n) {
        int cp = n & 1;
        while((n & 1) == cp){
            cp ^= 1;
            n = n >> 1;
        }
        return n == 0;
    }
}
 

复制代码

 

下面这种解法就十分的巧妙了,利用了0和1的交替的特性,进行错位相加,从而组成全1的二进制数,然后再用一个检测全1的二进制数的trick,就是‘与’上加1后的数,因为全1的二进制数加1,就会进一位,并且除了最高位,其余位都是0,跟原数相‘与’就会得0,所以我们可以这样判断。比如n是10101,那么n>>1就是1010,二者相加就是11111,再加1就是100000,二者相‘与’就是0,参见代码如下:

 

解法三:

复制代码

class Solution {
public:
    bool hasAlternatingBits(int n) {
        return ((n + (n >> 1) + 1) & (n + (n >> 1))) == 0;
    }
};

复制代码

 

下面这种解法也很巧妙,先将n右移两位,再和原来的n亦或,得到的新n其实就是除了最高位,其余都是0的数,然后再和自身减1的数相‘与’,如果是0就返回true,反之false。比如n是10101,那么n/4是101,二者相‘亦或’,得到10000,此时再减1,为1111,二者相‘与’得0,参见代码如下:

 

解法四:

复制代码

class Solution {
public:
    bool hasAlternatingBits(int n) {
        return ((n ^= n / 4) & (n - 1)) == 0;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值