6.不用额外变量交换两个整数
a = a ^ b;
b = a ^ b;
a = a ^ b;
7 [LeetCode] Power of Two 判断2的次方数
Given an integer, write a function to determine if it is a power of two.
Example 1:
Input: 1
Output: true
Example 2:
Input: 16
Output: true
Example 3:
Input: 218
Output: false
这道题让我们判断一个数是否为2的次方数,而且要求时间和空间复杂度都为常数,那么对于这种玩数字的题,我们应该首先考虑位操作 Bit Operation。在LeetCode中,位操作的题有很多,比如比如 Repeated DNA Sequences,Single Number, Single Number II, Grey Code, Reverse Bits,Bitwise AND of Numbers Range,Number of 1 Bits 和 Divide Two Integers 等等。那么我们来观察下2的次方数的二进制写法的特点:
1 2 4 8 16 ....
1 10 100 1000 10000 ....
那么我们很容易看出来2的次方数都只有一个1,剩下的都是0,所以我们的解题思路就有了,我们只要每次判断最低位是否为1,然后向右移位,最后统计1的个数即可判断是否是2的次方数,代码如下:
class Solution {
public boolean isPowerOfTwo(int n) {
if(n == 0)
return false;
int res = 0;
while(n > 0){
if((n & 1) == 1)
res++;
n = n >> 1;
}
return res == 1;
}
}
道题还有一个技巧,如果一个数是2的次方数的话,根据上面分析,那么它的二进数必然是最高位为1,其它都为0,那么如果此时我们减1的话,则最高位会降一位,其余为0的位现在都为变为1,那么我们把两数相与,就会得到0,用这个性质也能来解题,而且只需一行代码就可以搞定,如下所示:
public boolean isPowerOfTwo(int n) {
return n > 0 && (n & (n - 1)) == 0;
}
public boolean isPowerOfTwo(int n) {
return n > 0 && Integer.bitCount(n) == 1;
}
8 [LeetCode] Power of Four 判断4的次方数
Given an integer (signed 32 bits), write a function to check whether it is a power of 4.
Example:
Given num = 16, return true. Given num = 5, return false.
Follow up: Could you solve it without loops/recursion?
Credits:
Special thanks to @yukuairoy for adding this problem and creating all test cases.
这道题让我们判断一个数是否为4的次方数,那么最直接的方法就是不停的除以4,看最终结果是否为1,参见代码如下:
解法一:
class Solution {
public boolean isPowerOfFour(int n) {
if(n == 0)
return false;
while( n % 4 == 0)
n = n >> 2;
return n == 1;
}
}
下面这种方法是网上比较流行的一种解法,思路很巧妙,首先根据Power of Two中的解法二,我们知道num & (num - 1)可以用来判断一个数是否为2的次方数,更进一步说,就是二进制表示下,只有最高位是1,那么由于是2的次方数,不一定是4的次方数,比如8,所以我们还要其他的限定条件,我们仔细观察可以发现,4的次方数的最高位的1都是计数位,那么我们只需与上一个数(0x55555555) <==> 1010101010101010101010101010101,如果得到的数还是其本身,则可以肯定其为4的次方数:
解法二:
class Solution {
public boolean isPowerOfFour(int num) {
if(num <= 0)
return false;
return ((num & (num - 1)) == 0) && ((num & 0x55555555) == num) ;
}
}
或者我们在确定其是2的次方数了之后,发现只要是4的次方数,减1之后可以被3整除,所以可以写出代码如下:
解法三:
class Solution {
public boolean isPowerOfFour(int num) {
if(num <= 0)
return false;
return ((num & (num - 1)) == 0) && ((num-1) % 3 == 0) ;
}
}
9 [LeetCode] Binary Number with Alternating Bits 有交替位的二进制数
Given a positive integer, check whether it has alternating bits: namely, if two adjacent bits will always have different values.
Example 1:
Input: 5
Output: True
Explanation:
The binary representation of 5 is: 101
Example 2:
Input: 7
Output: False
Explanation:
The binary representation of 7 is: 111.
Example 3:
Input: 11
Output: False
Explanation:
The binary representation of 11 is: 1011.
Example 4:
Input: 10
Output: True
Explanation:
The binary representation of 10 is: 1010.
下面这种解法写的更加简洁了,我们不需要用if条件来判断,而是可以通过‘亦或’1的方式来将0和1互换,当然我们也可以通过d = 1 - d 来达到同样的效果,但还是写成‘亦或’1比较叼,while循环的条件是最低位等于d,而d不停的在0和1之间切换,n每次也向右平移一位,这样能交替检测0和1,循环退出后,如果n为0,则返回true,反之则返回false,参见代码如下:
解法二:
class Solution {
public:
bool hasAlternatingBits(int n) {
int d = n & 1;
while ((n & 1) == d) {
d ^= 1;
n >>= 1;
}
return n == 0;
}
};
class Solution {
public boolean hasAlternatingBits(int n) {
int cp = n & 1;
n = n >> 1;
while(n > 0){
int num = n & 1;
if(num == cp)
return false;
cp = num;
n = n >> 1;
}
return true;
}
}
class Solution {
public boolean hasAlternatingBits(int n) {
int cp = n & 1;
while((n & 1) == cp){
cp ^= 1;
n = n >> 1;
}
return n == 0;
}
}
下面这种解法就十分的巧妙了,利用了0和1的交替的特性,进行错位相加,从而组成全1的二进制数,然后再用一个检测全1的二进制数的trick,就是‘与’上加1后的数,因为全1的二进制数加1,就会进一位,并且除了最高位,其余位都是0,跟原数相‘与’就会得0,所以我们可以这样判断。比如n是10101,那么n>>1就是1010,二者相加就是11111,再加1就是100000,二者相‘与’就是0,参见代码如下:
解法三:
class Solution {
public:
bool hasAlternatingBits(int n) {
return ((n + (n >> 1) + 1) & (n + (n >> 1))) == 0;
}
};
下面这种解法也很巧妙,先将n右移两位,再和原来的n亦或,得到的新n其实就是除了最高位,其余都是0的数,然后再和自身减1的数相‘与’,如果是0就返回true,反之false。比如n是10101,那么n/4是101,二者相‘亦或’,得到10000,此时再减1,为1111,二者相‘与’得0,参见代码如下:
解法四:
class Solution {
public:
bool hasAlternatingBits(int n) {
return ((n ^= n / 4) & (n - 1)) == 0;
}
};