递推法

递推法

有一类试题,每相邻两项数之间的变化有一定的规律性,我们可将这种规律归纳成如下简捷的递推关系式:

    Fn=g(Fn-1)

    这就在数的序列中,建立起后项和前项之间的关系,然后从初始条件(或最终结果)入手,一步步地按递推关系递推,直至求出最终结果(或初始值)。很多程序就是按这样的方法逐步求解的。如果对一个试题,我们要是能找到后一项与前一项的关系并清楚其起始条件(最终结果),问题就好解决,让计算机一步步算就是了,让高速的计算机做这种重复运算,可真正起到“物尽其用”的效果。

    递推分倒推法和顺推法两种形式。一般分析思路:

    if求解条件F1

        then begin{倒推}

            由题意(或递推关系)确定最终结果Fa;

            求出倒推关系式Fi-1=g'(Fi);

            i=n;{从最终结果Fn出发进行倒推}

            while 当前结果Fi非初始值F1 do由Fi-1=g(F1)倒推前项;

            输出倒推结果F1和倒推过程;

            end {then}

        else begin{顺推}

            由题意(或顺推关系)确定初始值F1(边界条件);

            求出顺推关系式F1=g(Fi-1);

            i=1;{由边界条件F1出发进行顺推}

            while 当前结果Fi非最终结果Fn do由Fi=g(Fi-1)顺推后项;

            输出顺推结果Fn和顺推过程;

        end; {else}

一、倒推法

    所谓倒推法,就是在不知初始值的情况下,经某种递推关系而获知问题的解或目标,再倒推过来,推知它的初始条件。因为这类问题的运算过程是一一映射的,故可分析得其递推公式。然后再从这个解或目标出发,采用倒推手段,一步步地倒推到这个问题的初始陈述。

    下面举例说明。

[例1] 贮油点

    一辆重型卡车欲穿过1000公里的沙漠,卡车耗油为1升/公里,卡车总载油能力为500公升。显然卡车一次是过不了沙漠的。因此司机必须设法在沿途建立几个储油点,使卡车能顺利穿越沙漠,试问司机如何建立这些储油点?每一储油点应存多少油,才能使卡车以消耗最少油的代价通过沙漠?

算法分析:

    编程计算及打印建立的贮油点序号,各贮油点距沙漠边沿出发的距离以及存油量。

        No.        Distance(k.m.)        oil(litre)

        1                X X                X X

        2                X X                X X

        3                X X                X X

       ...              .....              ......

    设dis[i]   为第i个贮油点至终点(i=0)的距离;

      oil[i]   为第i个贮油点的存贮油量;

    我们可以用倒推法来解决这个问题。从终点向始点倒推,逐一求出每个贮油点的位置及存油量。

下图表示倒推时的返回点:

 

    从贮油点i向贮油点i+1倒推的策略是,卡车在点i和点i+1间往返若干次。卡车每次返回i+1处时正好耗尽500公升汽油,而每次从i+1出发时又必须装足500公升汽油。两点之间的距离必须满足在耗油最少的条件下使i点贮足i*500分升汽油的要求(0<=i<=n-1)。具体地讲,第一个贮油点i=1应距终点i=0处500km且在该处贮藏500公升汽油,这样才能保证卡车能由i=1处到达终点i=0处,这就是说

    dis[1]=500        oil[1]=500;

    为了在i=1处贮藏500公升汽油,卡车至少从i=2处开两趟满载油的车至i=1处。所以i=2处至少贮有2*500公升汽油,即oil[2]=500*2=1000。另外,再加上从i=1返回至i=2处的一趟空载,合计往返3次。三次往返路程的耗油量按最省要求只能为500公升。即d12=500/3km

        dis[2]=dis[1]+d12=dis[1]+500/3

 

 

 

    为了在i=2处贮存1000公升汽油,卡车至少从i=3处开三趟满载油的车至i=2处。报以i=3处至少贮有3*500公升汽油,即oil[3]=500*3=1500。加上i=2至i=3处的二趟返程空车,合计5次。路途耗油量也应为500公升,即d23=500/5,

        dis[3]=dis[2]+d23=dis[2]+500/5;

 

 

 

    依此类推,为了在i=k处贮藏k*500公升汽油,卡车至少从i=k+1处开k趟满载车至i=k处,即

    oil[k+1]=[k+1]*500=oil[k]+500,加上从i=k处返回i=k+1的k-1趟返程空间,合计2k-1次。这2k-1次总耗油量按最省要求为500公升,即

    dk,k+1=500/(2k-1)

        dis[k+1]=dis[k]+dk,k+1

                =dis[k]+500/(2k-1);

 

 

 

    最后,i=n至始点的距离为1000-dis[n],oil[n]=500*n。为了在i=n处取得n*500公升汽油,卡车至少从始点开n+1次满载车至i=n,加上从i=n返回始点的n趟返程空车,合计2n+1次,2n+1趟的总耗油量应正好为(1000-dis[n])*(2n+1),即始点藏油为oil[n]+(1000-dis[n])*(2n+1)。

下面为程序代码:

program oil_lib;

var

k:integer;  {贮油点位置序号}

d,            {累计终点至当前贮油点的距离}

d1:real;      {i=n至始点的距离}

oil,dis:array[1..10] of real;

i:integer;    {辅助变量}

begin

    writeln('NO.','distance(k.m)':30,'oil(1.)':80);

    k:=1;

    d:=500;    { 从i=1处开始向始点倒推}

    dis[1]:=500;

    oil[1]:=500;

    repeat

        k:=k+1;

        d:=d+500/(2*k-1);

        dis[k]:=d;

        oil[k]:=oil[k-1]+500;

    until d>=1000;

   

    dis[k]:=1000;        {置始点至终点的距离值}

    d1:=1000-dis[k-1];    {求i=n处至始点的距离}

    oil[k]:=d1*(2*k+1)+oil[k-1];    {求始点藏油量}

    for i:=0 to k do        {由始点开始,逐一打印始点至当前贮油点的距离和藏油量}

        writeln(i,1000-dis[k-i]:30,oil[k-i]:80);

end. {main}

 

转换为C语言程序如下:

#include<stdio.h>

void main()

{

    int k;            /*贮油点位置序号*/

    float d,d1;       /*d:累计终点至当前贮油点的距离,d1:i=n至始点的距离*/

    float oil[10],dis[10];

    int i;

    printf("NO. distance(k.m.)/toil(l.)/n");

    k=1;

    d=500;        /*从i=1处开始向始点倒推*/

    dis[1]=500;

    oil[1]=500;

    do{

        k=k+1;

        d=d+500/(2*k-1);

        dis[k]=d;

        oil[k]=oil[k-1]+500;

    }while(!(d>=1000));

    dis[k]=1000;        /*置始点至终点的距离值*/

    d1=1000-dis[k-1];    /*求i=n处至始点的距离*/

    oil[k]=d1*(2*k+1)+oil[k-1];    /*求始点藏油量*/

    for(i=0;i<k;i++)       /*由始点开始逐一打印始点至当前贮油点的距离和藏油量*/

        printf("%d/t%f/t%f/t/n",i,1000-dis[k-i],oil[k-i]);

}

 

实用算法(基础算法-递推法-02)

 

顺推法

    倒推法的逆过程就是顺推法,即由边界条件出发,通过递推关系式推出后项值,再由后项值按递推关系式推出再后项值......,依次递推,直至从问题初始陈述向前推进到这个问题的解为止。

    实数数列:一个实数数列共有N项,已知

            ai=(ai-1-ai+1)/2+d,   (1<i<N)(N<60)

    键盘输入N,d,a1,an,m,输出am

    输入数据均不需判错。

算法分析:

    分析该题,对公式:

        Ai=(Ai-1-Ai+1)/2+d         (1<i<N)     (n<60)

    作一翻推敲,探讨其数字变换规律。不然的话会无从下手。

    令 X=A2   s2[i]=(pi,Qi,Ri)表示Ai=PiX+QiD+RiA1

    我们可以根据

        Ai=Ai-2-2Ai-1+2D

          =PiX+QiD+RiA1

 

     A(i-1)=(   A(i-2)-A(i)   )/2+d,可以推出A(i)=A(i-2)-2A(i-1)+2d     

  A(i)=A(i-2)-2A(i-1)+2d=P(i)X+Q(i)d+R(i)A(1)  

  所以A(i-2)=P(i-2)X+Q(i-2)d+R(i-2)A(1)  

          A(i-1)=P(i-1)X+Q(i-1)d+R(i-1)A(1)  

  这样就推出PiX+QiD+RiA1=(Pi-2-2Pi-1)X+(Qi-2-2Qi-1+2)D+(Ri-2-2Ri-1)A1

 

    推出公式

        PiX+QiD+RiA1=(Pi-2-2Pi-1)X+(Qi-2-2Qi-1+2)D+(Ri-2-2Ri-1)A1

    比较等号两端X,D和A1的系数项,可得

        Pi=Pi-2-2Pi-1

        Qi=Qi-2-2Qi-1+2

        Ri=Ri-2-2Ri-1

    加上两个边界条件

        P1=0    Q1=0    R1=1    (A1=A1)

        P2=1    Q2=0    R2=0    (A2=A2)

    根据Pi、Qi、Ri的递推式,可以计算出

        S2[1]=(0,0,1);

        S2[3]=(-2,2,1);

        S2[4]=(5,-2,-2);

        S2[5]=(-12,8,5);

        ...................

        S2[i]=(Pi,Qi,Ri);

        ...................

        S2[N]=(PN,QN,RN);

    有了上述基础,AM便不难求得。有两种方法:

    1、由于AN、A1和PN、QN、RN已知,因此可以先根据公式:

        A2=AN-QND-RNA1/PN

    求出A2。然后将A2代入公式

        A3=A1-2A2+2D

    求出A3。然后将A3代入公式

        A4=A2-2A3+2D

    求出A4。然后将A4代入公式

    ............................

    求出Ai-1。然后将Ai-1代入公式

        Ai=Ai-2-2Ai-1+2D

    求出Ai。依此类推,直至递推至AM为止。

    上述算法的缺陷是由于A2是两数相除的结果,而除数PN递增,因此精度误差在所难免,以后的递推过程又不断地将误差扩大,以至当M超过40时,求出的AM明显徧离正确值。显然这种方法简单但不可靠。

    2、我们令A2=A2,A3=X,由S3[i]=(Pi,Qi,Ri)表示Ai=PiX+QiD+RiA2  (i>=2) 可计算出:

        S3[2]=(0,0,1)=S2[1];

        S3[3]=(1,0,0)=S2[2];

        S3[4]=(-2,2,1)=S2[3];

        S3[5]=(5,-2-2)=S2[4];

        ......................

        S3[i]=(..........)=S2[i-1];

        .....................

        S3[N]=(..........)=S2[N-1];

    再令A3=A3,A4=X,由S4[i]=(pi,Qi,Ri)表示Ai=PiX+QiD+RiA3   (i>=3) 可计算得出:

        S4[3]=(0,0,1)=S3[2]=S2[1];

        S4[4]=(1,0,0)=S3[3]=S2[2];

        S4[5]=(-22,1)=S3[4]=S2[3];

        ..........................

        S4[i]=(...........)=S3[i-1]=S2[i-2];

        .......................

        S4[N]=(...........)=S3[N-1]=S2[N-2];

     依此类推,我们可以发现一个有趣的式子:

        AN=PN-i+2*Ai+QN-i+2*D+RN-i+2*Ai-1,  即

        Ai=(AN-QN-i+2*D-RN-i+2*Ai-1)/PN-i+2

    我们从已知量A1和AN出发,依据上述公式顺序递推A2、A3、...、AM.由于PN-i+2递减,因此最后得出的AM要比第一种算法趋于精确。

程序代码如下:

program ND1P4;

const

    maxn    =60;

var

    n,m,i    :integer;

    d        :real;

    list     :array[1..maxn] of real;        {list[i]-------对应ai}

    s        :array[1..maxn,1..3] of real;   {s[i,1]--------对应Pi}

                                             {s[i,2]--------对应Qi}

                                             {s[i,3]--------对应Ri}

procedure init;

    begin

        write('n m d =');

        readln(n,m,d);            {输入项数,输出项序号和常数}

        write('a1 a',n,'=');

        readln(list[1],list[n]);    {输入a1和an}

    end;    {init}

procedure solve;

    begin

        s[1,1]:=0;s[1,2]:=0;s[1,3]:=1;   {求递推边界(P1,Q1,R1)和(P2,Q2,R2)}

        s[2,1]:=1;s[2,2]:=0;s[2,3]:=0;   {根据公式Pi<---Pi-2 - 2*Pi-1}

                                         {Qi<---Qi-2 - 2*Qi-1}

                                         {Ri<---Ri-2 - 2*Ri-1}

                                         {递推(P3,Q3,R3)......Pn,Qn,Rn)}

        for i:=3 to n do

            begin

                s[i,1]:=s[i-2,1]-2*s[i-1,1];

                s[i,2]:=s[i-2,2]-2*s[i-1,2]+2;

                s[i,3]:=s[i-2,3]-2*s[i-1,3];

            end; {for}

    end;{solve}

procedure main;

    begin

        solve;        {求(P1,Q1,R1)..(Pn,Qn,Rn)}

                      {根据公式Ai=(An-Qn-i+2 * d-Rn-i+2 * Ai-1)/Pn-i+2}

                      {递推A2..Am}

        for i:=2 to m do

            list[i]:=(list[n]-s[n-i+2,2]*d-s[n-i+2,3]*list[i-1])/s[n-i+2,1];

        writeln('a',m,'=',list[m]:20:10);    {输出Am}

    end;    {main}

begin

    init;        {输入数据}

    main;        {递推和输出Am}

    readln;

end.    {main}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值