统计利用先序遍历创建的二叉树的深度
  
  
     10000(ms)
   
   
     10000(kb)
   
   
     2768 / 6970
   
  
    利用先序递归遍历算法创建二叉树并计算该二叉树的深度。先序递归遍历建立二叉树的方法为:按照先序递归遍历的思想将对二叉树结点的抽象访问具体化为根据接收的数据决定是否产生该结点从而实现创建该二叉树的二叉链表存储结构。约定二叉树结点数据为单个大写英文字符。当接收的数据是字符"#"时表示该结点不需要创建,否则创建该结点。最后再统计创建完成的二叉树的深度(使用二叉树的后序遍历算法)。需要注意输入数据序列中的"#"字符和非"#"字符的序列及个数关系,这会最终决定创建的二叉树的形态。
   
   输入
输入为先序遍历二叉树结点序列。
输出
对应的二叉树的深度。
样例输入
A## ABC#### AB##C## ABCD###E#F##G## A##B##
样例输出
1 3 2 4 1
#include<iostream>
#include<stdlib.h>
using namespace std;
typedef struct node
{
char data;
struct node *l,*r;
}Tree;
void init(Tree *&l)//创建树
{
char ch;
cin>>ch;
if(ch=='#') l=NULL;
else
{
l=(Tree *)malloc(sizeof(Tree));
l->data=ch;
init(l->l);
init(l->r);
}
}
int high(Tree *&l)
{
if(l==NULL) return 0;
int sum1=0,sum2=0;
sum1=high(l->l);
sum2=high(l->r);
return sum1>=sum2?sum1+1:sum2+1;//返回深度更深的一端
}
int main()
{
Tree *l;
init(l);
cout<<high(l);
return 0;
}
 
                   
                   
                   
                   
                             本文介绍了一种通过先序遍历创建二叉树并计算其深度的方法。利用递归思想,根据输入的结点序列(包含#作为空结点标识),创建二叉链表形式的树结构,并运用后序遍历算法统计树的最大深度。
本文介绍了一种通过先序遍历创建二叉树并计算其深度的方法。利用递归思想,根据输入的结点序列(包含#作为空结点标识),创建二叉链表形式的树结构,并运用后序遍历算法统计树的最大深度。
           
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   2166
					2166
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            