算法-n数之和

总结

解n数之和的核心思想:在数组有序的情况下使用双指针(无序则手动排序),将n数之和转化为求n-1个数之和。

当有重复元素时,在循环过程中遵循以下两点:

  • 每一种循环枚举到的下标必须大于上一重循环枚举到的下标;
  • 同一重循环中,如果当前元素与上一个元素相同,则跳过当前元素

经典n数之和

towSum

两数之和 I:数组有序
左右指针
两数之和II:数组无序
1、前缀和
2、排序双指针

BST中求两数之和
解析:
虽然中序遍历有序,但是无法像数组那样使用双指针。
怎么办?——前缀和

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    Set<Integer>set=new HashSet<>();
    public boolean findTarget(TreeNode root, int k) {
        if(root==null){
            return false;
        }
        if(set.contains(k-root.val)){
            return true;
        }else{
            set.add(root.val);
        }
        return  findTarget(root.left,k) || findTarget(root.right,k);
    }
}

三数之和

添加链接描述

class Solution {
public:
    vector<vector<int>> threeSum(vector<int>& nums) {
        sort(nums.begin(),nums.end());
        vector<vector<int>>ans;
        for(int i=0;i<nums.size()-2;i++){
            if(i>0 && nums[i]==nums[i-1]){
                continue;
            }
            int left=i+1,right=nums.size()-1;
            while(left<right){
                int sum=nums[i]+nums[left]+nums[right];
                if(sum==0){
                    ans.push_back({nums[i],nums[left],nums[right]});
                    while(left<right && nums[left]==nums[left+1]) left++;
                    left++;
                    while(left<right && nums[right]==nums[right-1]) right--;
                    right--;
                }else if(sum<0){
                    left++;
                }else{
                    right--;
                }
            }
        }
        return ans;
    }
};

四数之和

四数之和
由于数字存在重复,所以对重复结果的处理很关键,也很易错。

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

class Solution {
    public List<List<Integer>> fourSum(int[] nums, int target) {
        List<List<Integer>> ans = new ArrayList<List<Integer>>();
        if (nums == null || nums.length < 4) {
            return ans;
        }
        Arrays.sort(nums); //关键
        int length = nums.length;
        for (int i = 0; i < length - 3; i++) {
            //关键点:跳过相同的数字
            if (i > 0 && nums[i] == nums[i - 1]) {
                continue;
            }
//            //数组是升序的,之后不可能有和为target的了
//            if (nums[i] + nums[i + 1] + nums[i + 2] + nums[i + 3] > target) {
//                return ans;
//            }
//
//            if (nums[i] + nums[length - 3] + nums[length - 2] + nums[length - 1] < target) {
//                continue;
//            }
            for (int j = i + 1; j < length - 2; j++) {
                //关键点:跳过相同的数字
                if (j > i + 1 && nums[j] == nums[j - 1]) {
                    continue;
                }
//
//                if (nums[i] + nums[j] + nums[length - 2] + nums[length - 1] < target) {
//                    continue;
//                }

                int left = j + 1, right = length - 1;
                while (left < right) {
                    int sum = nums[i] + nums[j] + nums[left] + nums[right];
                    if (sum == target) {
                        ans.add(Arrays.asList(nums[i], nums[j], nums[left], nums[right]));
                        //存在重复,需要跳过相同的数字
                        while (left < right && nums[left] == nums[left + 1]) {
                            left++;
                        }
                        left++;
                        while (left < right && nums[right] == nums[right - 1]) {
                            right--;
                        }
                        right--;
                    } else if (sum < target) {    //不等于时不跳过相同数字
                        left++;
                    } else {
                        right--;
                    }

                }
            }
        }
        return ans;
    }
}

相同的需要跳过

//关键点:跳过相同的数字
 if (i > 0 && nums[i] == nums[i - 1]) {
      continue;
  }

不然出现下面的情况
在这里插入图片描述

sum!= target时,如果跳过相同数字

 if (sum < target) {
     while (lo < hi && nums[lo] == left) lo++;
 } else if (sum > target) {
     while (lo < hi && nums[hi] == right) hi--;

就会出现下面的情况:
在这里插入图片描述

nSum

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

class Solution {
    /**
     * 
     * @param nums 数组
     * @param n    n个数的和
     * @param target 目标和
     * @return
     */
    public List<List<Integer>> nSum(int[] nums, int n,int target) {
        Arrays.sort(nums);
        return getNSum(nums, n, 0, target);
    }
    private List<List<Integer>> getNSum(int[] nums, int n, int st, int target) {
        int len=nums.length;
        List<List<Integer>>curList=new ArrayList<>();
        if (n==2){ //twoSum 双指针
            int left =st, right = len - 1;
            while (left < right) {
                int sum = nums[left] + nums[right];
                if (sum == target) {
                    curList.add(Arrays.asList(nums[left], nums[right]));
                    //存在重复,需要跳过相同的数字
                    while (left < right && nums[left] == nums[left + 1]) {
                        left++;
                    }
                    left++;
                    while (left < right && nums[right] == nums[right - 1]) {
                        right--;
                    }
                    right--;
                } else if (sum < target) {    //不等于时不跳过相同数字
                    left++;
                } else {
                    right--;
                }
            }
        }else if (n>2){ // n > 2 时,递归计算 (n-1)Sum 的结果
           for(int i=st;i<len-n+1;i++){
               if (i>st && nums[i-1]==nums[i]){
                   continue;
               }
               List<List<Integer>>subList=getNSum(nums,n-1,i+1,target-nums[i]);
               for (List<Integer> list : subList) {
                   List<Integer>t=new ArrayList<>();
                   t.add(nums[i]);
                   t.addAll(list);
                   curList.add(t);
               }
               
           }

        }
        return curList;
    }
}

变形

小于 K 的两数之和

添加链接描述

class Solution {
    public int twoSumLessThanK(int[] nums, int k) {
        int n=nums.length;
        //这些特殊情况能考虑到的都写上
        if(n<2){
            return -1;
        }
        Arrays.sort(nums);
        if(nums[0]+nums[1]>k){
            return -1;
        }
        int i=0,j=nums.length-1;
        int max=-1;
        while (i<j){
            int sum=nums[i]+nums[j];
            if(sum<k){
                max=Math.max(max,sum);
                i++;
            }else {
                j--;
            }
        }
        return max;
    }
}

最接近的三数之和

添加链接描述
一样的配方

import java.util.Arrays;

class Solution {
    public int threeSumClosest(int[] nums, int target) {
        int n = nums.length;
        if (n < 3) {
            return 0;
        }
        Arrays.sort(nums);

        int ans = 0;
        int min = Integer.MAX_VALUE;
        for (int i = 0; i < n - 2; i++) {
            if(i>0 && nums[i-1]==nums[i]){
                continue;
            }
            int left = i + 1, right = n - 1;
            while (left < right) {
                int temp = nums[i] + nums[left] + nums[right];
                if (temp == target) {
                    return target;
                }else if (temp < target) {
                    while (left < right && nums[left] == nums[left + 1]) {
                        left++;
                    }
                    left++;
                } else  if (temp > target){
                    while (left < right && nums[right - 1] == nums[right]) {
                        right--;
                    }
                    right--;
                }
                if (Math.abs(temp - target) < min) {
                    min = Math.abs(temp - target);
                    ans = temp;
                }
            }
        }
        return ans;
    }
}

有效三角形的个数

添加链接描述
法一:双指针
有效三角形:两边之和大于第三边
等效于三数之和
时间复杂度O(n^2),lc却超时

import java.util.Arrays;

class Solution {
    int ans=0;
    public int triangleNumber(int[] nums) {
        int n=nums.length;
        if(n<3){
            return 0;
        }
        Arrays.sort(nums);

        for (int i = 0; i < n-2; i++) {
            if(nums[i]==0){
                continue;
            }
            int left=i+1,right=n-1;
            while (left<right){
                int sum=nums[i]+nums[left];
                if (sum>nums[right]){
                    ans+=right-left;
                }else {
                    right--;
                }
            }
        }
        return ans;
    }
}

法二:二分
朴素思想就是先对数组排序,然后从前往后找两个数,再找第三个数,如果前两个数的和>第三个数,则可以组成三角形。
遍历所有情况统计即可,但是三层循环O(n^3),超时。
优化:
第三层循环可以优化成二分查找

import java.util.Arrays;

class Solution {
    public int triangleNumber(int[] nums) {
        Arrays.sort(nums);
        int n=nums.length;
        int ans=0;
        for (int i=0;i<n-2;i++){
            for (int j=i+1;j<n-1;j++){
                int sum=nums[i]+nums[j];
                //找到[j+1,n-1]范围内,小于sum的所有数中的最大数k,那么[j+1,k]就都符合要求
                int left=j+1,right=n-1;
                while (left<right){
                    int mid=(right-left+1)/2+left;
                    if(sum>nums[mid]){
                        left=mid;
                    }else {
                        right=mid-1;
                    }
                }
                if(nums[left]<sum) {
                //nums[left]>=sum则说明一个符合的都没有
                    ans += left - j;
                }
            }
        }
        return ans;
    }
}

四数之和2

四数之和2:变形
和前面的解法不再一样,本题采用两两分组求和的思想

class Solution {
    public int fourSumCount(int[] A, int[] B, int[] C, int[] D) {

        Map<Integer,Integer> map=new HashMap<>();
        for (int a : A) {
            for (int b : B) {
                map.put(a+b,map.getOrDefault(a+b,0)+1); //记录和为a+b的次数
            }
        }
        int ans=0;
        for (int c : C) {
            for (int d : D) {
                if(map.containsKey(0-c-d)){
                    ans+=map.get(0-c-d);
                }
            }
        }
        return ans;
    }
}

时间 n^2
空间 n^2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值