为什么需要仿真?
想象一下当你发现了一个新的算法,但还不确认它是否有效,你是否会直接找一辆自动驾驶汽车,更新软件,并且进行测试呢?这样做可能并不安全,你必须把所有的场景测试一遍以保证它足够好,这可需要大量的时间。仿真的好处显而易见,它通过软件模拟来发现和复现问题,而不需要真实的环境和硬件,可以极大的节省成本和时间。
随着现在深度学习的兴起,仿真在自动驾驶领域有了新的用武之地。自动驾驶平台通过仿真采集数据,可以把训练时间大大提高,远远超出路测的时间,加快模型迭代速度。先利用集群训练模型,然后再到实际的路测中去检验,采用数据驱动的方式来进行自动驾驶研究。
自动驾驶的仿真的论文可以参考英伟达的[End to End Learning for Self-Driving Cars](End to End Learning for Self-Driving Cars),主要的目的是通过软件来模拟车以及车所在的环境,实现自动驾驶的集成测试,训练模型,模拟事发现场等功能。那么我们是如何模拟车所在的环境的呢?
如何仿真?
**要模拟车所在的环境,就得把真实世界投影到虚拟世界,并且需要构造真实世界的物理规律。**例如需要模拟真实世界的房子,车,树木,道路,红绿灯,不仅需要大小一致,还需要能够模拟真实世界的物理规律,比如树和云层会遮挡住阳光,房子或者障碍物会阻挡你的前进,车启动和停止的时候会有加减速曲线。
**总之,这个虚拟世界得满足真实世界的物理规律
自动驾驶仿真通过模拟真实环境与物理规律,提供安全、高效的数据收集和测试手段,加速模型迭代。借助游戏引擎如Unreal和Unity,仿真软件能模拟多种传感器数据和复杂场景,用于复现问题、集成测试、训练模型等。仿真在自动驾驶领域扮演着不可或缺的角色,通过桥接器连接自动驾驶系统,支持功能多样化和定制化测试。
最低0.47元/天 解锁文章
3252

被折叠的 条评论
为什么被折叠?



