在一个空间坐标系中,已知沿着Z轴进行切片的多个切片圆的半径和圆心,使用切片圆拟合球体的球心和半径

这个问题可以使用最小二乘法来解决。假设我们已知 N N N 个切片圆,第 i i i 个切片圆的半径为 r i r_i ri,圆心坐标为 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)。我们要拟合的球体的球心坐标为 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0),半径为 r r r

对于第 i i i 个切片圆,我们可以写出其所在的平面方程:

( x − x i ) 2 + ( y − y i ) 2 + ( z − z i ) 2 = r i 2 (x-x_i)^2+(y-y_i)^2+(z-z_i)^2=r_i^2 (xxi)2+(yyi)2+(zzi)2=ri2

化简一下得:

x 2 + y 2 + z 2 − 2 x x i − 2 y y i − 2 z z i + ( x i 2 + y i 2 + z i 2 − r i 2 ) = 0 x^2+y^2+z^2-2xx_i-2yy_i-2zz_i+(x_i^2+y_i^2+z_i^2-r_i^2)=0 x2+y2+z22xxi2yyi2zzi+(xi2+yi2+zi2ri2)=0

我们可以将上述方程写成向量形式:

[ 2 x i 2 y i 2 z i − 1 ] [ x   y   z   − 1 ] x i 2 + y i 2 + z i 2 − r i 2 \begin{bmatrix} 2x_i & 2y_i & 2z_i & -1 \end{bmatrix} \begin{bmatrix} x \ y \ z \ -1 \end{bmatrix} x_i^2+y_i^2+z_i^2-r_i^2 [2xi2yi2zi1][x y z 1]xi2+yi2+zi2ri2

我们可以将所有的 N N N 个平面方程写成矩阵形式:

[ 2 x 1 2 y 1 2 z 1 − 1   2 x 2 2 y 2 2 z 2 − 1   ⋮ ⋮ ⋮ ⋮   2 x N 2 y N 2 z N − 1   ] [ x   y   z   − 1 ] [ x 1 2 + y 1 2 + z 1 2 − r 1 2   x 2 2 + y 2 2 + z 2 2 − r 2 2   ⋮   x N 2 + y N 2 + z N 2 − r N 2   ] \begin{bmatrix} 2x_1 & 2y_1 & 2z_1 & -1 \ 2x_2 & 2y_2 & 2z_2 & -1 \ \vdots & \vdots & \vdots & \vdots \ 2x_N & 2y_N & 2z_N & -1 \ \end{bmatrix} \begin{bmatrix} x \ y \ z \ -1 \end{bmatrix} \begin{bmatrix} x_1^2+y_1^2+z_1^2-r_1^2 \ x_2^2+y_2^2+z_2^2-r_2^2 \ \vdots \ x_N^2+y_N^2+z_N^2-r_N^2 \ \end{bmatrix} [2x12y12z11 2x22y22z21  2xN2yN2zN1 ][x y z 1][x12+y12+z12r12 x22+y22+z22r22  xN2+yN2+zN2rN2 ]

设上述矩阵为 A A A,向量为 b b b,未知量向量为 x x x,则上述方程可以写成 A x = b Ax=b Ax=b 的形式。我们的目标是通过最小化残差 ∣ A x − b ∣ | Ax-b | Axb 来得到 x x x 的最优解,即球心坐标 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0) 和半径 r r r

最小二乘法的解法比较简单,直接求解 x = ( A T A ) − 1 A T b x=(A^TA)^{-1}A^Tb x=(ATA)1ATb 即可。将 x x x 拆分成 ( x 0 , y 0 , z 0 , r ) (x_0,y_0,z_0,r) (x0,y0,z0,r),即可得到球心坐标和半径。

|可以使用最小二乘法拟合球心和半径。具体实现步骤如下:
1.定义一个球体结构体,包含球心坐标和半径:

struct Sphere {
    double x, y, z;  // 球心坐标
    double r;        // 半径
};

2.定义一个函数,输入为多个切片圆的半径和圆心,输出为拟合得到的球体结构体:

Sphere fitSphere(vector<pair<double, tuple<double, double, double>>> circles) {
    // 初始化矩阵A和向量b
    Eigen::MatrixXd A(circles.size(), 4);
    Eigen::VectorXd b(circles.size());
    for (int i = 0; i < circles.size(); i++) {
        double r = circles[i].first;
        double x = get<0>(circles[i].second);
        double y = get<1>(circles[i].second);
        double z = get<2>(circles[i].second);
        A(i, 0) = 2 * x;
        A(i, 1) = 2 * y;
        A(i, 2) = 2 * z;
        A(i, 3) = -1;
        b(i) = x * x + y * y + z * z - r * r;
    }


    // 使用最小二乘法求解
    Eigen::VectorXd x = A.jacobiSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(b);

    // 将求解结果转换为球体结构体
    Sphere sphere;
    sphere.x = x(0);
    sphere.y = x(1);
    sphere.z = x(2);
    sphere.r = std::sqrt(x(0) * x(0) + x(1) * x(1) + x(2) * x(2) - x(3));

    return sphere;
}

3.调用上述函数进行拟合:

vector<pair<double, tuple<double, double, double>>> circles;  // 切片圆的半径和圆心
// 添加切片圆
circles.push_back(make_pair(1.0, make_tuple(0.0, 0.0, 0.0)));
circles.push_back(make_pair(2.0, make_tuple(0.0, 0.0, 1.0)));
circles.push_back(make_pair(3.0, make_tuple(0.0, 0.0, 2.0)));
// 拟合球体
Sphere sphere = fitSphere(circles);
// 输出结果
cout << "Sphere center: (" << sphere.x << ", " << sphere.y << ", " << sphere.z << ")" << endl;
cout << "Sphere radius: " << sphere.r << endl;
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值