pytorch基础-使用 TORCH.AUTOGRAD 进行自动微分(5)

本文详细介绍了PyTorch中反向传播的工作原理,包括张量的requires_grad属性、计算图、梯度计算以及autograd包的自动微分功能。通过一个简单的单层神经网络实例,展示了如何定义计算图,计算损失函数的梯度,并利用这些梯度更新参数。此外,还讨论了如何禁用梯度跟踪以提高效率,以及计算雅可比积的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在训练神经网络时,最常用的算法是反向传播。PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。在该算法中,参数(模型权重)根据损失函数相对于给定参数的梯度进行调整。为了计算这些梯度,Pytorch有一个名为 torch.autograd 的内置微分引擎。它支持自动计算任何计算图形的梯度。本例中考虑最简单的单层神经网络,输入x,参数w和b,以及一些损失函数。可通过以下方式在PyTorch中定义:

import torch

x = torch.ones(5)  # input tensor,返回一个全为1 的张量,形状由可变参数sizes定义
y = torch.zeros(3)  # expected output,返回一个全为标量 0 的张量
w = torch.randn(5, 3, requires_grad=True)#返回一个符合均值为0,方差为1的正态分布(标准正态分布)中填充随机数的张量
b = torch.randn(3, requires_grad=True)  #requires_grad(bool, optional) –autograd是否应该记录对返回张量的操作(说明当前量是否需要在计算中保留对应的梯度信息)。
z = torch.ma
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只小小的土拨鼠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值