在训练神经网络时,最常用的算法是反向传播。PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。在该算法中,参数(模型权重)根据损失函数相对于给定参数的梯度进行调整。为了计算这些梯度,Pytorch有一个名为 torch.autograd 的内置微分引擎。它支持自动计算任何计算图形的梯度。本例中考虑最简单的单层神经网络,输入x,参数w和b,以及一些损失函数。可通过以下方式在PyTorch中定义:
import torch
x = torch.ones(5) # input tensor,返回一个全为1 的张量,形状由可变参数sizes定义
y = torch.zeros(3) # expected output,返回一个全为标量 0 的张量
w = torch.randn(5, 3, requires_grad=True)#返回一个符合均值为0,方差为1的正态分布(标准正态分布)中填充随机数的张量
b = torch.randn(3, requires_grad=True) #requires_grad(bool, optional) –autograd是否应该记录对返回张量的操作(说明当前量是否需要在计算中保留对应的梯度信息)。
z = torch.ma
本文详细介绍了PyTorch中反向传播的工作原理,包括张量的requires_grad属性、计算图、梯度计算以及autograd包的自动微分功能。通过一个简单的单层神经网络实例,展示了如何定义计算图,计算损失函数的梯度,并利用这些梯度更新参数。此外,还讨论了如何禁用梯度跟踪以提高效率,以及计算雅可比积的方法。
订阅专栏 解锁全文
625

被折叠的 条评论
为什么被折叠?



