这一节的内容,将研究如何通过保存、加载和运行预测模型来保持模型状态。导入相应的包:
import torch
import torchvision.models as models
1、 保存和加载模型权重
PyTorch 模型将学习到的参数存储在称为 state_dict 的内部状态字典中。 这些参数可以通过 torch.save 方法保存起来:
model = models.vgg16(pretrained=True)#创建预训练模型vgg16,实例化
torch.save(model.state_dict(), 'model_weights.pth')
在加载模型权重时,我们需要先实例化模型类,因为该类定义网络的结构。然后使用 load_state_dict() 方法加载参数。
model = models.vgg16() # 没有指定预训练=True,即不加载默认权重
model.load_state_dict(torch.load('model_weights.pth'))
model.eval()#模型中有BatchNormalization和Dropout,在预测时使用model.eval()后会将其关闭以免影响预测结果。
这篇博客介绍了如何在PyTorch中保存和加载模型权重,包括使用预训练模型进行迁移学习。文章详细阐述了state_dict的保存和加载,并讨论了在预测时调用model.eval()的重要性。此外,还展示了如何修改预训练模型结构,如添加或更改线性层。最后,展示了如何保存和加载自定义的神经网络模型。
订阅专栏 解锁全文
222

被折叠的 条评论
为什么被折叠?



