神经网络可以用torch.nn包来构建。之前的内容已经了解了 自动梯度,神经网络是基于自动梯度来定义一些模型。一个 nn.Module 包含层和返回输出的方法 forward(input)。例如,看看这个分类数字图像的网络:

这是一个简单的前馈网络。 它接受输入,一个接一个地通过几个层,最后给出输出。
神经网络的典型训练过程如下:
- 定义具有一些可学习参数的神经网络(或权重)
- 迭代输入数据集
- 通过网络处理输入
- 计算损失(输出距离正确有多远)
- 将梯度传播回网络的参数
- 更新网络的权重,通常使用简单的更新规则:
weight=weight-learning_rate*gradient
1、定义网络
让我们定义这个网络结构:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
d
订阅专栏 解锁全文
7万+

被折叠的 条评论
为什么被折叠?



