使用 PyTorch 进行深度学习-神经网络(部分)

神经网络可以用torch.nn包来构建。之前的内容已经了解了 自动梯度,神经网络是基于自动梯度来定义一些模型。一个 nn.Module 包含层和返回输出的方法 forward(input)。例如,看看这个分类数字图像的网络:

这是一个简单的前馈网络。 它接受输入,一个接一个地通过几个层,最后给出输出。

神经网络的典型训练过程如下:

  • 定义具有一些可学习参数的神经网络(或权重)
  • 迭代输入数据集
  • 通过网络处理输入
  • 计算损失(输出距离正确有多远)
  • 将梯度传播回网络的参数
  • 更新网络的权重,通常使用简单的更新规则: weight=weight-learning_rate*gradient

  1、定义网络

让我们定义这个网络结构:

import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):

    d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只小小的土拨鼠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值