短时交通流量预测,即如何有效地利用实时交通数据信息 去滚动预测未来几分钟内的交通状况。其结果可以直接送到先进的交通信息系统和先进的交通管理系统当中,给出行者提供实时有效的信息,帮助他们更好地进行路径选择,实现路径诱导,以缩减出行时间,减少交通拥堵。
以前会用的模型——历史平均模型
算法定义为 V(new)=αV+(1一α)V(old)。式中, V(new)代表某路段在一定时间间隔内的新的交通流 量;V(old)代表该路段在一定时间间隔内的旧的交通 流量;V为最近观察到的该路段在一定时间间隔内的 交通流量;α为平滑系数。
目前流行的模型——神经网络模型
一、BP神经网络交通流预测
BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。

网络选用S型传递函数

, 通过反传误差函数

( (Ti为期望输出、Oi为网络的计算输出),不断调节网络权值和阈值使误差函数E达到极小。
二、小波神经网络

将神经网络隐结点的S函数由小波函数来代替,相应的输入层到隐含层的权值及隐含层的阈值分别由小波函数的尺度伸缩因子和时间平移因子所代替。优点是收敛快、误差曲线圆滑、稳定。
三、支持向量机预测

四、长短时记忆循环神经网络(LSTM)预测
加了门单元来选择忘记和记住一些信息,目前最为广泛应用

820

被折叠的 条评论
为什么被折叠?



