善待“老黄牛”!

转自:央视网评

岗位上有一种人,勤勤恳恳,频下苦功,默默奉献。我们管这样的人叫“老黄牛”。

近两年的抗疫战线上,冲在最前面的各行业工作者,为了保障人民安全不舍昼夜。很少人记得他们口罩下的样子,也叫不大出他们的名字。他们是“老黄牛”。科技攻关过程中,甘坐冷板凳的技术人员,常年埋头钻研,代代接力,一次次接近成功,也可能一次次从头再来。他们是“老黄牛”。

块块荒田水和泥,深耕细作走东西。“老黄牛”们做的事未必有可以量化的功绩,但绝不是没有创造价值,只是多数时候,他们的功劳是隐形的,甚至不求回报的。这其实更需要被发现、被认可。

“一不怕苦、二不怕死”精神的原型人物王杰,在50多年前的日记中曾写道:“我们革命战士,就是要具备老黄牛的忠心耿耿埋头苦干的精神。”不以出风头、争功劳为目标,做而不宣,不计回报,甘于奉献,这样的精神境界曾经得到全社会的尊重和追捧。

时代在变,如今有的单位以结果为导向定义员工价值,不仅让“老黄牛”被低估,甚至被异化成“老实牛”:在一些人看来,“老黄牛”就是那些默默无闻、任人摆布,还看不见出头之日的老实人。

谁也不想成为这样的人。于是,干三分、说七分,成了流行的自我营销手段;拣领导眼前的活儿干,拣容易出风头的活儿干,成了会做人、会做事的表现。秉持“老黄牛”的精神,倒不如学会“表面光”的花招。长此以往,踏实做事的“老黄牛”也许就少了,钻营“套路”的“聪明人”会变多。

然而,社会发展和进步,终究不是靠“套路”。绝大多数岗位的运转,需要的是踏实的螺丝钉,是吃苦耐劳的“老黄牛”。

善待“老黄牛”,要肯定并尊重其价值。一些单位总把急难险重留给“老黄牛”们,因为他们不计较、不抱怨、干得好。可如果一味求其付出,却忘了给予和认同,长期不提供应有的回报,只怕“老黄牛”也会有撂挑子的一天。

善待“老黄牛”,要鼓励并帮助其建功立业。那些不怕麻烦、不怕吃苦、不怕困难的干部,理应给予他们更多学习和进步的机会。甘于在基层奉献,坚持在奉献中不断提升自己能力和水平的干部,也该支持他们走向更大的舞台、挑起更重的担子。

善待“老黄牛”,更不能一味地“鞭打快牛”。老牛亦解韶光贵,不待扬鞭自奋蹄。实际上,“老黄牛”们常常也是单位里最热爱岗位、自我要求最高的一批人。适当的鞭策和鼓励,会更好地激发他们的激情和干劲;一味违背事物发展规律地层层加码,求快求结果,又是鞭打又是吆喝,往往会挫伤他们的积极性、影响他们的创造力。

善待“老黄牛”,不光为了给干事者撑腰,鼓励创造更大的成果,更为了重塑“付出才有收获”的价值环境,培养一代又一代的“老黄牛”。

往期推荐

明天,有你好看!

一个员工的离职成本,很恐怖!

Python实现王者农药自动刷金币

文章好看点这里

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值