使用快速排序、堆和桶解决「TopK问题」(Python)

TopK问题即求解第K个最大or最小元素的问题,一般使用快排来实现。

1 快速排序:

先总结快速排序的python模板。首先使用partition函数完成对数组从pivot的划分工作。

partition函数模板:

# 将数组分为小于基准值、基准值、大于基准值三个部分
def partition(nums, left, right):
    pivot = nums[left]  # 初始化一个基准值
    i, j = left, right
    while(i < j):
        while(i < j and nums[j] >= pivot): j -= 1  # 从后往前查找,直到找到一个比pivot小的数
        nums[i] = nums[j]  # 把这个数放左边来
        while(i < j and nums[i] <= pivot): i += 1  # 从前往后查找,直到找到一个比pivot大的数
        nums[j] = nums[i]  # 把这个数放右边来
    nums[i] = pivot 
    return i  # 返回基准值最终位置

然后使用partition递归完成快排。

快排模板:

def quicksort(nums, left, right):
    if left < right:
        index = partition(nums, left, right)  # 一个一个固定pivot的位置,直
### 解决二维数组Top-K问题Python实现 对于二维数组中的Top-K问题,可以采用多种策略来优化效率。以下是基于排序(Heap Sort)、优先队列以及线性扫描的方法。 #### 方法一:利用最大获取Top-K元素 可以通过构建一个大小为K的小顶来维护当前最大的前K个数。每次遇到新的较大值时更新的内容。这种方法的时间复杂度接近于O(N log K),其中N表示整个二维数组中元素的数量[^1]。 ```python import heapq def top_k_elements(matrix, k): min_heap = [] for row in matrix: for element in row: if len(min_heap) < k: heapq.heappush(min_heap, element) elif element > min_heap[0]: heapq.heapreplace(min_heap, element) return sorted(min_heap, reverse=True) matrix_example = [ [9, 8, 7], [6, 5, 4], [3, 2, 1] ] k_value = 3 result_top_k = top_k_elements(matrix_example, k_value) print(result_top_k) ``` 上述代码片段展示了如何使用`heapq`模块创建并操作最小结构以找到二维列表中的顶级K项。 #### 方法二:展开成一维再应用快速选择算法 另一种方式是先将二维数组转换为单维度形式,之后运用快速选择(Quickselect)技术定位第K大位置上的项目,从而间接得到所需的最高K个项目集合。此过程平均时间复杂度大约为O(n)[^3]。 ```python from random import randint def partition(nums, low, high): pivot_index = randint(low,high) nums[pivot_index], nums[high] = nums[high], nums[pivot_index] pivot = nums[high] i = low - 1 for j in range(low , high): if nums[j] >= pivot: i += 1 nums[i],nums[j]=nums[j],nums[i] nums[i+1],nums[high]=nums[high],nums[i+1] return (i + 1) def quick_select(lst,kth_smallest=0,start=None,end=None): start=start or 0 end=end or len(lst)-1 while True: pi=partition(lst,start,end) if pi==kth_smallest: break elif pi>kth_smallest: end=pi-1 else: start=pi+1 return lst[:kth_smallest] flatten_matrix=[item for sublist in matrix_example for item in sublist ] top_k_quickselect=quick_select(flatten_matrix,k=k_value ) print(top_k_quickselect) ``` 这里提供了另一个版本的例子,它把原始数据扁平化处理后再调用自定义函数完成任务需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海苔小饼干

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值