电赛笔记【集成运放简介】

集成运放概述

常见的模拟集成电路类型

  • 集成运算放大器OP
  • 集成功率放大器
  • 集成高频放大器
  • 集成中频放大器
  • 集成比较器
  • 集成乘法器
  • 集成稳压器
  • 集成数模/模数转换器ADC/DAC

模拟集成电路的特性

集成电路中一般使用三极管组成恒流源电路来部分替代电阻

硅片上难以制作大电容、大电感,因此电路常常使用直接耦合的方式

常采用复合管的方式制作较大放大倍数的三极管

集成运放的基本组成

输入级

输入级要求高阻抗,常使用射随器与差分放大器减少温漂和增大输入电阻

一般使用复合管构成差分放大器,配合共集-共基放大器,用额外三极管的基极输出信号,可以实现很大的输入电阻和很大的共模抑制比

将复合管共基接法可以改善频率响应

使用共模负反馈减小温漂、提高共模抑制比

中间级

常采用共射放大器配合复合管获得高增益

使用互补放大电路实现高放大倍数并提高带载能力

也存在放大器两端外接矫正电容来提高电路容性,防止自激振荡的措施(抑制过高的放大倍数、抑制正反馈)

输出级

要求低阻抗,常使用射随器减小输出电阻

可以使用准互补OCD电路来提高带载能力,并引入电阻-二极管过载保护电路

偏置电路

使用恒流源电路给予三极管合适的偏置电压电流

多使用镜像恒流源配合跨接在VCC、VEE之间的电阻来提供标准偏置电流

集成运放的特性

集成运放的开环放大倍数 A o d A_{od} Aod非常大,一般使用负反馈的方式构造可控倍数的放大器或使用深度正反馈构造自激振荡电路

开环差模电压增益

直观上的运放开环情况下对差模信号的电压增益

A o d A_{od} Aod表示,一般用对数表示,单位分贝

实际情况下运放Aod在100到140之间

输入失调电压、电流

为了使输出电压为0,在输入端需要加的补偿电压

一般运放在1-10mV

高端运放要保证在1mV以下

输入失调电压、电流温漂

由于温漂导致的输入失调电压增高情况

输入偏置电流

输出电压为0时,两个输入端偏置电流的平均值

差模输入电阻

一般要求很大,在几十MΩ

共模抑制比

多数运放在80-160dB之间

最大共模、差模输入电压

直观上就是集成运放的耐压

一定程度上表征运放的耐静电程度

-3dB带宽fH

表示Aod下降3dB时的频率。一般集成运放的fH在几H到几千Hz

单位增益带宽

Aod降低到0时的频率,此时运放开环差模电压放大倍数=1

转换速率

集成运放对输入-输入信号的转换速率

单极型集成运放

三极管又称为BJT(双结型晶体管),组成双极型集成运放;也可以使用MOSFET组成单极型集成运放

采用耗尽型NMOS组成双入双出差分放大电路、使用增强型NMOS组成有源负载,并使用电流源组成偏置电路

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值