The Accomodation of Students 染色法判断二分图+二分最大匹配

There are a group of students. Some of them may know each other, while others don't. For example, A and B know each other, B and C know each other. But this may not imply that A and C know each other. 

Now you are given all pairs of students who know each other. Your task is to divide the students into two groups so that any two students in the same group don't know each other.If this goal can be achieved, then arrange them into double rooms. Remember, only paris appearing in the previous given set can live in the same room, which means only known students can live in the same room. 

Calculate the maximum number of pairs that can be arranged into these double rooms. 

Input

For each data set: 
The first line gives two integers, n and m(1<n<=200), indicating there are n students and m pairs of students who know each other. The next m lines give such pairs. 

Proceed to the end of file. 
 

Output

If these students cannot be divided into two groups, print "No". Otherwise, print the maximum number of pairs that can be arranged in those rooms. 

Sample Input

4 4
1 2
1 3
1 4
2 3
6 5
1 2
1 3
1 4
2 5
3 6

Sample Output

No
3

 

 

因为题目中要把人分为两部分,所以用染色法判断是否是二分图,判断方法是,判断一张图是否可以用两种颜色就着色,同时,相邻的点颜色不同。如果可以的话,那就是一张二分图。然后就是普通的二分最大匹配了。

代码如下:

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#define mmm(a,b) memset(a,b,sizeof(a))
using namespace std;
int e[205][205];
int match[205];
bool book[205];
int xx[205][205];
int a,b;
int n,m;
int color[205];
bool dfs(int u)
{
    for(int i=1; i<=n ; i++)
    {
        if(!book[i]&&e[u][i]==1)
        {
            book[i]=true;
            if(match[i]==0||dfs(match[i]))
            {
                match[i]=u;
                return true;
            }
        }
    }
    return false;
}

bool judge(int u)
{
    for(int i=1;i<=n;i++)
    {
        if(e[u][i]==0)
            continue;
        if(color[u]==color[i]) return 0;
        if(!color[i])
        {
            color[i]=-color[u];
            if(!judge(i))
                return 0;
        }
    }
    return 1;
}
int main()
{
   while(~scanf("%d%d",&n,&m))
   {
      mmm(e,0);
      for(int i=1;i<=m;i++)
      {
          scanf("%d%d",&a,&b);
          e[a][b]=e[b][a]=1;
      }
      mmm(color,0);
      color[1]=1;
      if(!judge(1))
      {
          printf("No\n");
          continue;
      }
      int ans=0;
      mmm(match,0);
      for(int i=1;i<=n;i++)
      {
          mmm(book,0);
          if(dfs(i)) ans++;
      }
      printf("%d\n",ans/2);
   }
}




 

 

 

emmmm 附上二分图判定的代码:

#include <bits\stdc++.h>
using namespace std;
#define MAX_V 1000

//输入 
vector<int> G[MAX_V];  //图 
int V;                       //顶点数 
int color[MAX_V];  //顶点的颜色 (1 or -1) 


//顶点v,颜色c 
bool dfs(int v,int c){
    color[v] = c;
    //把当前顶点相邻的顶点扫一遍 
    for(int i = 0;i < G[v].size(); i++){
        //如果相邻顶点已经被染成同色了,说明不是二分图 
        if(color[G[v][i]] == c) return false;
        //如果相邻顶点没有被染色,染成-c,看相邻顶点是否满足要求 
        if(color[G[v][i]] == 0 && !dfs(G[v][i],-c)) return false;
    }
    //如果都没问题,说明当前顶点能访问到的顶点可以形成二分图 
    return true;
}


void solve(){
    //可能是不连通图,所以每个顶点都要dfs一次 
    for(int i = 0;i < V; i++){
        if(color[i] == 0){
            //第一个点颜色为 1 
            if(!dfs(i,1)){
                cout << "No" << endl;
                return;
            }
        }
    }
}


int main(){
    //输入
} 

这个二分判定的代码是我转载的,原地址是https://blog.csdn.net/zhangjiuding/article/details/78314728

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值