Codeforces Round #506 (Div. 3) C(区间交集中的前缀后缀思想)

题目链接:Codeforces Round #506 (Div. 3) C

题目大意:给n个区间,至多可以去掉一个其中一个区间,最终使得剩下所有区间交集的长度最大,即max(r-l)。且当l==r或交集为空集时,区间长度为0。

初步想法很显然,求Lr_{min}-l_{max}。但问题是确定弃掉的区间。刚开始想着用暴力的方法对区间依照长度排序后,根据l和r的大小情况剪枝并获得答案,但自己实现了一阵发现代码复杂得要命而且判断情况太多实现难度太大就放弃了。之后看到题解也是一脸懵逼,它统计了一个貌似和前缀后缀有关的东西,然而并不理解它时=是咋样放弃不用的区间的。之后经过一系列的调试标称,才差不多明白(雾

思路是这样的,对区间左端点和右端点分别统计其前缀和后缀最值,然后对1~n遍历,维护答案。重点是每次比较时,取pr[i]和su[i+1]比较,而pr[i]存的实际上是i-1时的前缀最值,即前缀后缀最值比较时,并没有计算中间所夹的i的前后缀最值,其意义就是假设舍去第i个区间所得的结果(太菜了,研究了1个小时才发现),显然时间复杂的为O(n)。

代码(注意计算前缀最值的过程 

#include <cstdio>
#include <cstring>
#include <algorithm>
typedef long long ll;
using namespace std;
#define INF 0x3f3f3f3f
const int maxn=3e5+10;
int n,l[maxn],r[maxn],prl[maxn],prr[maxn],sul[maxn],sur[maxn];
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++) scanf("%d%d",&l[i],&r[i]);
    prl[1]=sul[n+1]=0;
	prr[1]=sur[n+1]=INF;
    for(int i=1;i<=n;i++){
    	prl[i+1]=max(prl[i],l[i]);
    	prr[i+1]=min(prr[i],r[i]);
    }
    for(int i=n;i>=1;i--){
    	sul[i]=max(sul[i+1],l[i]);
    	sur[i]=min(sur[i+1],r[i]);
    }
    int ans=0;
    for(int i=1;i<=n;i++)
    	ans=max(ans,min(prr[i],sur[i+1])-max(prl[i],sul[i+1]));
    printf("%d\n",ans );
    return 0;
}

同款题目了解下 AIM Tech Round 5 (rated, Div. 1 + Div. 2)_C(相当于求二维平面交集)

没做出来还是很开心啦,第一次cf涨分(+123,大佬勿喷

相关推荐
©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页