六西格玛管理概念大盘点

六西格玛管理作为一种自成系统的管理方法,它的基本原理可以表述为:降低劣质成本,减少质量波动,优化资源利用,追求以更少的资源和更低的成本提供更好的产品和服务,从而最大限度地为用户创造价值,为组织创造利润。

这里盘点六西格玛管理中会涉及的各个概念,供学习了解;
在这里插入图片描述

DPMO (Defect Per Million Opportunity) 百万缺陷机会缺陷数

DPO (Defect Per Opportunity) 单位机会缺陷数

DPU (Defect Per Unit) 单位缺陷数

FMEA (Failure Mode and Effects Analysis) 失效模式与影响分析:用来分析产品或服务及其过程由于失效导致风险的方法。

FTY (First Time Yield) 首次产出率

Histogram 直方图:用宽度相同的矩形表示数据分布的图形工具。

KPIV (Key Process Input Variables) 关键过程输入变量

Long – Term Capability 长期能力

Mini-Tab 6西格玛常使用的一种统计软件

MSA (Measure System Analysis) 测量系统分析

Multi-Vari Chart 多变量图:直观地提供过程各影响因素之间的关系以及它们对过程输出影响的坐标图。 Null – Hypothesis 零假设,缩写为H0

Pareto Chart 排列图:也称帕累托图,由一个横坐标、两个纵坐标、几个按高低顺序排列的矩形和一条累积百分比折线组成的分析图表。

Process Mapping 过程图解

p-Value p值:偏离零假设的概率,是可能拒绝原假设而接受备择假设的显著性水平。

Regression Analysis 回归分析:变量间关系的分析方法。

R&R (Repeatability & Reproducibility) 测量系统的重复性与再现性

COPQ (Cost Of Poor Quality) 不良质量成本损失:由于缺陷或不良质量造成的成本损失。

CTQ (Critical to Quality) 关键质量特性:满足关键的顾客要求或过程要求的产品或过程特性。

Defect 缺陷:不满足CTQ规范的任何事件。

DOE (Design of Experiment) 实验设计:析因实验和相应的改进方法。

ANOVA 方差分析:将因素对质量特性的影响与误差对质量特性的影响加以区分并做出估计,然后进行比较,分析、推断哪些因素或哪些因素间的交互作用对质量特性有显著影响。

Attribute Data 计数数据:通过计数得到的不能连续取值的离散型数据。

Benchmarking 水平对比:将过程、产品和服务质量同公认的处于领先地位的竞争者进行比较,从而找到改进机会或确定突破目标。

Black Belt 黑带:来自企业各个部门,经过6西格玛改进过程和工具的全面培训,熟悉6西格玛改进过程,具有较强的组织与协调能力,指导或领导6西格玛改进项目的进行。

Bottom Line 底线:账面上的利润,是产品/服务的销售成本和费用的函数。

Box - plot 箱线图:同时展示每个子群分布特征的5个统计量的坐标图。

Business Culture 企业文化:区别于其他组织的价值、观点、期望、准则和行为。

Cause-Effect Diagram 因果图:也称“石川图”、“鱼刺图”,是揭示质量特性波动与潜在原因的关系,即表达和分析因果关系的一种图表。

Continuous Data 计量数据:通过测量得到的可任意取值的连续型数据。

Continuous Improvement 持续改进:逐步的、永无止境的不断改进循环。

Control Chart 控制图:以统计推断理论为基础,设置统计控制限,按时间坐标显示独立测量值、平均值或其他统计值;

文思特(北京)管理咨询为您整理分享

http://www.win-starcn.com

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页