一、启动环境
需要启动mysql,hadoop,hive,spark。并且能让spark连接上hive(上一章有讲)
#启动mysql,并登录,密码123456
sudo systemctl start mysqld
mysql -uroot -p
#启动hive
cd /opt/module/
myhadoop.sh start
#查看启动情况
jpsall
#启动hive
cd /opt/module/hive/bin/
hiveservices.sh start
#查看启动状态
/opt/module/hive/bin/hiveservices.sh status
启动beeline:
#启动thriftserver
cd /opt/module/spark-local/
sbin/start-thriftserver.sh
#通过spark的beeline连接
bin/beeline -u jdbc:hive2://hadoop102:10000 -n root

创建数据库:
show databases
本文介绍了如何在SparkSQL环境下,通过连接mysql、hadoop、hive和spark,实现数据导入与处理。首先启动相关环境,然后将txt文件数据导入hive。接着,提出需求:计算区域内的热门商品及其在主要城市的分布比例。通过查询记录并与city_info、product_info表连接,按地区和商品ID分组统计点击次数,再通过自定义UDAF函数处理城市备注,展示前三大热门商品及其分布情况。
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



