Mingw32编译opencv库


注意:
mingw32-make编译的库和MSVC编译的库不兼容,MSVC和mingw-make生成的动态库使用的是不同的ABI(Application Binary Interface),不能混合使用由这两个编译器生成的库。例如,如果你的程序使用了由MSVC编译的库,那么你的程序也必须使用MSVC来编译。另外mingw32-make编译的库的库文件是.a后缀,MSVC编译的库的库文件是.lib。

1. 准备工作

  • 安装cmake
    参考

  • 安装mingw32
    参考

  • 下载opencv源码
    下载地址:https://codeload.github.com/opencv/opencv/zip/refs/tags/4.6.0
    下载后解压。

2. 编译

cmake构建程序

  • 进入opencv源码目录
  • 新建build目录
  • 进入build目录
  • 执行cmake命令
D:\myApp\opencv460\opencv-4.6.0>mkdir build


D:\myApp\opencv460\opencv-4.6.0>cd build


D:\myApp\opencv460\opencv-4.6.0\build>cmake .. -G "MinGW Makefiles" -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=D:\myApp\opencv460\opencv-4.6.0\build -D BUILD_opencv_world=ON
-- The CXX compiler identification is GNU 13.2.0
-- The C compiler identification is GNU 13.2.0
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Check for working CXX compiler: D:/myApp/mingw64/bin/c++.exe - skipped
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working C compiler: D:/myApp/mingw64/bin/gcc.exe - skipped
-- Detecting C compile features
-- Detecting C compile features - done
-- ocv_init_download: OpenCV source tree is not fetched as git repository. 3rdparty resources will be downloaded from github.com by default.
-- Detected processor: AMD64
CMake Warning (dev) at cmake/OpenCVUtils.cmake:144 (find_package):
  Policy CMP0148 is not set: The FindPythonInterp and FindPythonLibs modules
  are removed.  Run "cmake --help-policy CMP0148" for policy details.  Use
  the cmake_policy command to set the policy and suppress this warning.

Call Stack (most recent call first):
  cmake/OpenCVDetectPython.cmake:64 (find_host_package)
  cmake/OpenCVDetectPython.cmake:271 (find_python)
  CMakeLists.txt:628 (include)
This warning is for project developers.  Use -Wno-dev to suppress it.

-- Found PythonInterp: D:/myApp/anaconda3/python.exe (found suitable version "3.11.5", minimum required is "2.7")
CMake Warning at cmake/OpenCVDetectPython.cmake:81 (message):
  CMake's 'find_host_package(PythonInterp 2.7)' found wrong Python version:

  PYTHON_EXECUTABLE=D:/myApp/anaconda3/python.exe

  PYTHON_VERSION_STRING=3.11.5

  Consider providing the 'PYTHON2_EXECUTABLE' variable via CMake command line
  or environment variables

Call Stack (most recent call first):
  cmake/OpenCVDetectPython.cmake:271 (find_python)
  CMakeLists.txt:628 (include)
  。。。。。。。。。。。。。。。。。。。。

上面关键的指令是这一句:

cmake .. -G "MinGW Makefiles" -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=D:\myApp\opencv460\opencv-4.6.0\build -D BUILD_opencv_world=ON

解释一下:

  • … 表示上一级目录,即opencv源码目录
  • -G “MinGW Makefiles” 表示生成MinGW Makefiles工程
  • -D CMAKE_BUILD_TYPE=RELEASE 表示编译类型为RELEASE
  • -D CMAKE_INSTALL_PREFIX=D:\myApp\opencv460\opencv-4.6.0\build 表示安装目录
  • -D BUILD_opencv_world=ON 表示编译opencv_world库

mingw32-make编译

  • 执行mingw32-make命令
mingw32-make -j8

输出如下:

D:\myApp\opencv460\opencv-4.6.0\build>mingw32-make -j 8
[  0%] Built target opencv_videoio_plugins
[  0%] Building C object 3rdparty/openjpeg/openjp2/CMakeFiles/libopenjp2.dir/thread.c.obj
[  0%] Built target opencv_highgui_plugins
[  0%] Building CXX object CMakeFiles/ade.dir/3rdparty/ade/ade-0.1.1f/sources/ade/source/alloc.cpp.obj
[  0%] Building C object 3rdparty/quirc/CMakeFiles/quirc.dir/src/decode.c.obj
[  0%] Building C object 3rdparty/zlib/CMakeFiles/zlib.dir/adler32.c.obj
[  0%] Building C object 3rdparty/libjpeg-turbo/CMakeFiles/libjpeg-turbo.dir/src/jcapimin.c.obj
[  0%] Building C object 3rdparty/libwebp/CMakeFiles/libwebp.dir/src/dec/alpha_dec.c.obj
[  0%] Building C object 3rdparty/openjpeg/openjp2/CMakeFiles/libopenjp2.dir/bio.c.obj
[  0%] Building C object 3rdparty/quirc/CMakeFiles/quirc.dir/src/quirc.c.obj

note: -j8 表示8个线程编译,可以根据自己的电脑配置来设置。
如果报错如下

D:/myApp/opencv460/opencv-4.6.0/build/3rdparty/ade/ade-0.1.1f/sources/ade/include/ade/typed_graph.hpp:101:10: error:
'uintptr_t' in namespace 'std' does not name a type
  101 |     std::uintptr_t m_srcGraph;
      |          ^~~~~~~~~
D:/myApp/opencv460/opencv-4.6.0/build/3rdparty/ade/ade-0.1.1f/sources/ade/include/ade/typed_graph.hpp:22:1: note: 'std::uintptr_t' is defined in header '<cstdint>'; did you forget to '#include <cstdint>'?
   21 | #include "typed_metadata.hpp"
  +++ |+#include <cstdint>

这是因为ade库用到了std::uintptr_t,std::uintptr_t在cstdint头文件中。但是它没有包含cstdint头文件,需要手动添加。(编译报错的提示还是很有用的)

3. 安装

mingw32-make install
D:\myApp\opencv460\opencv-4.6.0\build>mingw32-make install
[  0%] Built target opencv_highgui_plugins
[  2%] Built target libopenjp2
[  2%] Built target opencv_videoio_plugins
[  3%] Built target zlib
[  9%] Built target opencv_core
[ 15%] Built target opencv_imgproc
[ 18%] Built target libjpeg-turbo
[ 25%] Built target libwebp
[ 28%] Built target libtiff
[ 29%] Built target libpng
[ 35%] Built target IlmImf
[ 36%] Built target opencv_imgcodecs
[ 37%] Built target opencv_videoio
[ 37%] Built target opencv_highgui
[ 37%] Built target opencv_ts
[ 40%] Built target opencv_test_core
[ 42%] Built target opencv_perf_core
[ 42%] Built target opencv_flann
[ 42%] Built target opencv_test_flann
[ 46%] Built target opencv_test_imgproc
[ 48%] Built target opencv_perf_imgproc
[ 49%] Built target opencv_ml
[ 50%] Built target opencv_test_ml
[ 51%] Built target opencv_photo
[ 52%] Built target opencv_test_photo
[ 53%] Built target opencv_perf_photo
[ 55%] Built target libprotobuf
[ 64%] Built target opencv_dnn
[ 65%] Built target opencv_test_dnn
[ 65%] Built target opencv_perf_dnn
[ 67%] Built target opencv_features2d
[ 68%] Built target opencv_test_features2d
[ 69%] Built target opencv_perf_features2d
[ 69%] Built target opencv_test_imgcodecs
[ 69%] Built target opencv_perf_imgcodecs
[ 70%] Built target opencv_test_videoio
[ 70%] Built target opencv_perf_videoio
[ 73%] Built target opencv_calib3d
[ 75%] Built target opencv_test_calib3d
[ 76%] Built target opencv_perf_calib3d
[ 76%] Built target opencv_test_highgui
[ 77%] Built target quirc
[ 78%] Built target opencv_objdetect
[ 78%] Built target opencv_test_objdetect
[ 78%] Built target opencv_perf_objdetect
[ 79%] Built target opencv_stitching
[ 79%] Built target opencv_test_stitching
[ 79%] Built target opencv_perf_stitching
[ 80%] Built target opencv_video
[ 81%] Built target opencv_test_video
[ 82%] Built target opencv_perf_video
[ 83%] Built target ade
[ 91%] Built target opencv_gapi
[ 97%] Built target opencv_test_gapi
[ 98%] Built target opencv_perf_gapi
[ 98%] Built target gen_opencv_python_source
[ 99%] Built target opencv_python3
[ 99%] Built target opencv_annotation
[ 99%] Built target opencv_visualisation
[ 99%] Built target opencv_interactive-calibration
[100%] Built target opencv_version
[100%] Built target opencv_version_win32
[100%] Built target opencv_model_diagnostics
Install the project...
-- Install configuration: "Release"
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/opencl-headers-LICENSE.txt
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/ade-LICENSE
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/ffmpeg-license.txt
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/ffmpeg-readme.txt
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/include/opencv2/cvconfig.h
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/include/opencv2/opencv_modules.hpp
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/x64/mingw/lib/OpenCVModules.cmake
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/x64/mingw/lib/OpenCVModules-release.cmake
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/x64/mingw/lib/OpenCVConfig-version.cmake
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/x64/mingw/lib/OpenCVConfig.cmake
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/./OpenCVConfig-version.cmake
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/./OpenCVConfig.cmake
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/./LICENSE
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/./setup_vars_opencv4.cmd
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/zlib-README
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/libjpeg-turbo-README.md
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/libjpeg-turbo-LICENSE.md
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/libjpeg-turbo-README.ijg
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/libtiff-COPYRIGHT
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/libopenjp2-README.md
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/libopenjp2-LICENSE
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/libpng-LICENSE
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/libpng-README
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/openexr-LICENSE
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/openexr-AUTHORS.ilmbase
-- Installing: D:/myApp/opencv460/opencv-4.6.0/build/install/etc/licenses/openexr-AUTHORS.openexr

4. 安装完的结果

在这里插入图片描述

### 回答1: mingw32-make.exe是一个常用的编译工具,它是GNU工具链中的一部分。它主要用于在Windows操作系统上编译和构建C/C++项目。 mingw32-make.exe是GNU make的一个变体,它为Windows平台提供了版本。它是一个命令行工具,通过读取名为Makefile的文件来执行编译过程。Makefile是一个文本文件,其中包含编译项目的规则、依赖关系以及执行指令。 使用mingw32-make.exe可以有效地管理源代码文件和编译过程。它通过自动化构建过程,根据Makefile中的规则和依赖关系来决定使用哪些源文件,并自动调用相应的编译器和链接器来生成最终的可执行文件。 mingw32-make.exe还支持并行编译,可以同时处理多个文件,提高了编译的效率。 此外,mingw32-make.exe还具有丰富的功能和选项,可以根据项目的具体要求进行配置。可以设置编译参数、链接选项、目标文件路径等。 总之,mingw32-make.exe是一个在Windows平台上常用的编译工具,它简化了代码编译和构建的过程,提高了编译效率,是C/C++开发者的重要工具之一。 ### 回答2: mingw32-make.exe 是一个编译工具,它是MinGW(Minimalist GNU for Windows)工具集中的一部分。MinGW是一套在Windows平台下使用GNU工具的开发环境,其中包括了GCC(GNU Compiler Collection)编译器。 mingw32-make.exe 是MinGW工具集中的一个重要组件,它是GNU make工具的Windows版本。make工具是一个命令行工具,用于自动化构建和编译软件项目。通过编写一个makefile文件,我们可以定义项目的编译规则、依赖关系和命令,然后使用mingw32-make.exe 来执行这些规则,自动化地完成编译过程。 mingw32-make.exe 提供了一些命令行参数,用于控制编译过程。常见的参数包括: - -n:显示执行过程但不实际执行命令。 - -f <makefile>:指定要使用的makefile文件。 - -j <jobs>:指定同时执行的作业数量,加速编译过程。 - clean:清理编译生成的文件。 使用 mingw32-make.exe,我们可以方便地管理复杂项目的编译过程,自动编译所需的源代码,并生成可执行文件或文件。它是开发者进行软件项目构建的重要工具之一,在Windows平台上提供了使用GNU工具集进行开发的便利。 ### 回答3: mingw32-make.exe是一个命令行工具,属于MinGW(Minimalist GNU for Windows)软件开发环境的一部分。MinGW是一个用于Windows平台的开源开发工具集,它提供了一组工具和,使开发人员能够在Windows编译和构建基于GNU工具链的应用程序。 mingw32-make.exe是MinGW环境中的一个工具,用于自动化构建和编译项目。它根据Makefile规则来决定哪些文件需要重新编译,以及如何执行编译命令。Makefile是一个文本文件,包含了一系列规则,描述了如何自动构建一个项目。使用mingw32-make.exe可以方便地执行Makefile中定义的规则,进行项目的构建和编译。 使用mingw32-make.exe,开发人员可以通过简单的命令行操作自动化执行繁琐的构建过程。它可以实现增量编译,只编译发生变化的文件,提高了编译的效率。同时,它还可以自动解决文件依赖关系,只重新编译必要的文件,减少了编译时间。 总之,mingw32-make.exe是MinGW环境中的一个重要工具,它能够自动化构建和编译项目,提高开发效率并简化开发流程。通过合理使用此工具,开发人员可以更加高效地进行软件开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值