bzoj 1977严格次小生成树

原文链接:https://blog.csdn.net/BerryKanry/article/details/77983140

题目大意:求严格次小生成树 

#include<stdio.h>
#include<algorithm>
#include<cstring>
#include<iostream>
using namespace std;
typedef long long dnt;

const int INF=0x3f3f3f3f;

struct edge
{
    int u,v,w,last;
}ed[2000010],sid[2000010];

int n,m,num=0,tot=0,ans=INF;
int head[100010],fa[100010],dep[100010];
int anc[100010][20],st[100010][20],sd[100010][20],used[300010];
dnt bns=0;

bool cmp(const edge &a,const edge &b)
{
    return a.w<b.w;
}

void add(int u,int v,int w)
{
    num++;
    ed[num].v=v;
    ed[num].w=w;
    ed[num].last=head[u];
    head[u]=num;
}

int getfather(int x)
{
    if(x==fa[x]) return x;
    return fa[x]=getfather(fa[x]);
}

void Kruscal()
{
    sort(sid+1,sid+m+1,cmp);
    for(int i=1;i<=n;i++)
        fa[i]=i;
    for(int i=1;i<=m;i++)
    {
        int x=getfather(sid[i].u),y=getfather(sid[i].v);
        if(x!=y)
        {
            used[i]=1;
            tot++,bns+=sid[i].w;
            add(sid[i].u,sid[i].v,sid[i].w);
            add(sid[i].v,sid[i].u,sid[i].w);
            fa[x]=y;
        }
        if(tot==n-1) return ;
    }
    return ;
}

void dfs(int u,int f)
{///  这个代码的精华所在
    anc[u][0]=f;
    for(int p=1;p<=16;p++)
    {
        anc[u][p]=anc[anc[u][p-1]][p-1],/// 祖先部分
        st[u][p]=max(st[u][p-1],st[anc[u][p-1]][p-1]);///  最大值部分(显然  ST表)
        if(st[u][p-1]==st[anc[u][p-1]][p-1])
            sd[u][p]=max(sd[u][p-1],sd[anc[u][p-1]][p-1]);/// 到祖先的两部分如果最大值都相等的话 那么直接从两部分的次大值转移过来一定没错
        else
        {
            sd[u][p]=min(st[u][p-1],st[anc[u][p-1]][p-1]);///要么是两个最大值的较小的
            sd[u][p]=max({sd[u][p],sd[u][p-1],sd[anc[u][p-1]][p-1]});///还要考虑是否有一部分的次小时大于上面的那个较小的最大值
        }
    }
    for(int i=head[u];i;i=ed[i].last)
    {
        int v=ed[i].v;
        if(v==f) continue ;
        dep[v]=dep[u]+1;
        st[v][0]=ed[i].w;
        dfs(v,u);
    }
}

void calmx(int wth,int vth,int &d,int &e)
{
    if(wth==d) return ;
    if(wth>d) e=d,d=wth;
    else if(wth>e) e=wth;
    e=max(e,vth);
}

int lca(int u,int v,int xx)
{
    int d=0,e=0;
    if(dep[u]<dep[v]) swap(u,v);
    for(int i=16;i>=0;i--)
        if(dep[anc[u][i]]>=dep[v])
        {
            calmx(st[u][i],sd[u][i],d,e);
            u=anc[u][i];
        }
    if(u==v)
    {
        if(xx==d) return e;
        return d;
    }
    for(int i=16;i>=0;i--)
        if(anc[u][i]!=anc[v][i])
        {
            calmx(st[u][i],sd[u][i],d,e);calmx(st[v][i],sd[u][i],d,e);
            u=anc[u][i],v=anc[v][i];
        }
    calmx(st[u][0],sd[u][0],d,e),calmx(st[v][0],sd[v][0],d,e);
    if(xx==d) return e;
    return d;
}

int main()
{
//    freopen("input2.txt","r",stdin);
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)
        scanf("%d%d%d",&sid[i].u,&sid[i].v,&sid[i].w);
    Kruscal();
    dfs(1,1);
    for(int i=1;i<=m;i++)
    {
        if(used[i]) continue ;
        int u=sid[i].u,v=sid[i].v;
        int tmp=lca(u,v,sid[i].w);
        ans=min(ans,sid[i].w-tmp);
    }
    cout << ans+bns <<endl ;
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值