pyinstaller 打包exe ,出现的问题 缺少 QtCore.dll, QtGui.dll,QtWidgets.dll pyinstaller 打包exe ,出现的问题 缺少 QtCore.dll, QtGui.dll,QtWidgets.dll
Pytorch框架的学习(4) 1.Pytorch与autograd(自动计算梯度)-导数-方向导数-偏导数-梯度的概念2.梯度与机器学习中的最优解3.Variable is Tensor(案例中见)4.如何计算梯度5.关于Autograd的几个概念torch.autograd.Function的子类并实现forward和backward函数
Pytorch框架的学习(3) 1.Tensor的组合/拼接2.Tensor的切片 3.Tensor的变形操作 4.Tensor的填充操作 5.Tensor的频谱操作(傅里叶变换)6.Pytorch简单编程技巧
Pytorch框架的学习(2) 1.Tensor中统计学相关的函数2.统计学习中分布函数(以后学习)3.Tensor中的随机抽样4.Pytorch与线性代数运算5.Pytorch与张量的操作(裁剪、索引与数据筛选,组合与拼接、切片、变形、填充)
Pytorch框架的学习(1) Pytorch的基本概念1、tensor(张量)概念2、tensor的用法2.1、tensor的类型2.2、tensor的创建2.3、tensor的属性2.4、tensor的运算
读周志华《机器学习》第四章--决策树 目录一、决策树1.1原理 1.2决策树的特点 1.3决策树的三种基本类型 二、ID3(信息增益)算法 2.1信息熵 2.2条件熵 2.3信息增益详解3. ID3算法缺点 三、C4.5算法(分类树)1.信息增益率 2.剪枝 2.1 预剪枝2.2后剪枝 3.缺点四、CART算法 (分类树)4.1.连续特征处理 4.2.离散特征处理4.3.基尼指数(分类树)决策树:从训练数据中学习得出一个树状结构的模型。就相当于这种树状模型。 ......
周志华《机器学习》第三章课后习题 目录3.1 试析在什么情形下式(3.2) 中不必考虑偏置项 b.3.2、试证明,对于参数w,对率回归的目标函数(3.18)是非凸的,但其对数似然函数(3.27)是凸的. 3.3、编程实现对率回归,并给出西瓜数据集3.0α上的结果.3.4 选择两个 UCI 数据集,比较 10 折交叉验证法和留一法所估计出的对率回归的错误率。3.5 编辑实现线性判别分析,并给出西瓜数据集 3.0α 上的结果.①b与输入毫无关系,如果没有b,y‘=wx必须经过原点②当两个线性模型相减时,消除了b。可用训练集中每个样本都减去第
非常详细的相机标定原理(四)(张正友相机标定法数学推导求解) 解释单应性矩阵H 1.H是内参矩阵和外参矩阵的混合体:2.先不考虑镜头畸变: 3.旋转向量在构造中是相互正交: 4.—个单应性矩阵H可以提供上述两个约束条件5.B带入前面两个约束条件后可转化为 6.两约束条件最终可以转化为如下形式: 7.通过以上的公式推导做铺垫,求相机内参数。8. 求相机外参9.奇异值分解10. 考虑透镜畸变的影响......
非常详细的相机标定原理(三)(张正友相机标定法初见和单应性矩阵) 一、回顾上两篇文章的内容二、标定方法分类三、张氏标定法1.棋盘2.用棋盘1).单应性变换 2).单应性在计算机视觉中的应用3).如何估计单应矩阵?
非常详细的相机标定原理、步骤(二) 像素坐标、图像坐标系三、图像坐标系转化为像素坐标系、相机坐标系转化为图像坐标系(三维转二维)、世界坐标系转换为像素坐标系 、畸变参数 1.径向畸变 2.切向畸变3.畸变矫正