计算机笔记--【Redis高级】

提示:本文章的内容来源于自己所学的一些知识以及网络

文章目录

一、分布式缓存

基于Redis集群解决单机Redis存在的问题

单机的Redis存在四大问题:
在这里插入图片描述

1.Redis持久化

Redis有两种持久化方案:

  • RDB持久化
  • AOF持久化

1.1.RDB持久化(存数据)

RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。快照文件称为RDB文件,默认是保存在当前运行目录。

1.1.1.执行时机

RDB持久化在四种情况下会执行:

  • 执行save命令
  • 执行bgsave命令
  • Redis停机时
  • 触发RDB条件时

1)save命令(不推荐,耗时)

执行下面的命令,可以立即执行一次RDB:
在这里插入图片描述
save命令会导致主进程执行RDB(写入数据到磁盘操作比较耗时),这个过程中其它所有命令都会被阻塞。只有在数据迁移时可能用到。

2)bgsave命令(推荐使用,异步持久化

下面的命令可以异步执行RDB:

在这里插入图片描述
这个命令执行后会开启独立进程完成RDB,主进程可以持续处理用户请求,不受影响。

3)停机时(主动停机,非宕机)

Redis停机时会执行一次save命令,实现RDB持久化。

4)触发RDB条件

Redis内部有触发RDB的机制(隔一段时间就触发RDB),可以在redis.conf文件中找到,格式如下:

# 900秒内,如果至少有1个key被修改,则执行bgsave , 如果是save "" 则表示禁用RDB
save 900 1  
save 300 10  
save 60 10000 

RDB的其它配置也可以在redis.conf文件中设置:

# 是否压缩 ,建议不开启,压缩也会消耗cpu,磁盘的话不值钱
rdbcompression yes

# RDB文件名称
dbfilename dump.rdb  

# 文件保存的路径目录
dir ./ 
1.1.2.RDB原理

bgsave开始时会fork主进程得到子进程(主进程阻塞),子进程共享主进程的内存数据,页表是映射关系,进程操作的都是虚拟内存,通过映射关系来操作实际的内存。完成fork后读取内存数据并写入 RDB 文件。

fork采用的是copy-on-write技术(写的时候做一份拷贝,解决持久化脏读问题):

  • 当主进程执行读操作时,访问共享内存;
  • 当主进程执行写操作时,则会拷贝一份数据,执行写操作。
    在这里插入图片描述
1.1.3.小结

RDB方式bgsave的基本流程?

  • fork主进程得到一个子进程,拷贝页表,共享内存空间,做持久化速度快(阻塞主线程
  • 子进程读取内存数据并写入新的RDB文件(异步写入,非阻塞
  • 用新RDB文件替换旧的RDB文件

RDB会在什么时候执行?save 60 1000代表什么含义?

  • 默认是服务停止时(save命令
  • 代表60秒内至少执行1000次修改则触发RDB(bgsave命令

RDB的缺点?

  • RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险
  • fork子进程、压缩、写出RDB文件都比较耗时

1.2.AOF持久化(存命令)

1.2.1.AOF原理

AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。
在这里插入图片描述

1.2.2.AOF配置

AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:

# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"

AOF的命令记录的频率也可以通过redis.conf文件来配:

# 表示每执行一次写命令,立即记录到AOF文件,写内存同时写磁盘,性能差,可靠性强
appendfsync always 
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案(性能高、牺牲了可靠性,可能会丢失一秒钟内的数据)
appendfsync everysec 
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘(随机事件写,频率低,性能低)
appendfsync no

三种策略对比:
在这里插入图片描述

1.2.3.AOF文件重写

因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果
在这里插入图片描述
如图,AOF原本有三个命令,但是set num 123 和 set num 666都是对num的操作,第二次会覆盖第一次的值,因此第一个命令记录下来没有意义。

所以重写命令后,AOF文件内容就是:mset name jack num 666

Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:

# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写 
auto-aof-rewrite-min-size 64mb 

1.3.RDB与AOF对比

RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。
在这里插入图片描述

2.Redis主从

2.1.搭建主从架构

单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离(但是要保证数据的一致性,数据同步)
在这里插入图片描述
具体搭建流程参考《Redis集群搭建.md》

2.2.主从数据同步原理

2.2.1.全量同步

主从第一次建立连接时,会执行全量同步 RDB、repl_baklog,将master节点的所有数据都拷贝给slave节点,流程:(RDB文件同步后,比较慢,耗性能,主机可能还是写一部分数据,导致数据不一致,通过repl_baklog来发送命令,缓冲区的,来保证主从数据一致性
在这里插入图片描述
这里有一个问题,master如何得知salve是第一次来连接呢?

有几个概念,可以作为判断依据:

  • Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid
  • offset偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。

因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据。

因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接时,发送的replid和offset是自己的replid和offset。

master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。

master会将自己的replid和offset都发送给这个slave,slave保存这些信息。以后slave的replid就与master一致了。

因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致

如图:
在这里插入图片描述
演示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
全量同步完整流程描述:

  • slave节点请求增量同步
  • master节点判断replid,发现不一致,拒绝增量同步
  • master将完整内存数据生成RDB,发送RDB到slave
  • slave清空本地数据,加载master的RDB
  • master将RDB期间的命令记录在repl_baklog(新数据),并持续将log中的命令发送给slave
  • slave执行接收到的命令,保持与master之间的同步
2.2.2.增量同步

全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步(比如说slave重启后同步,数据存在落后)。

什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:
在这里插入图片描述
那么master怎么知道slave与自己的数据差异在哪里呢?

2.2.3.repl_backlog原理(环形数组)

master怎么知道slave与自己的数据差异在哪里呢?

这就要说到全量同步时的repl_baklog文件了。

这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖

repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:
在这里插入图片描述
slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。

随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset
在这里插入图片描述
直到数组被填满:
在这里插入图片描述
此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分

但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset
在这里插入图片描述
如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:
在这里插入图片描述
棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。
在这里插入图片描述

2.3.主从同步优化(尽量避免全量同步)

主从同步可以保证主从数据的一致性,非常重要。

可以从以下几个方面来优化Redis主从就集群:

  • 在master中配置repl-diskless-sync yes启用无磁盘复制(写RDB文件时,不写到磁盘的IO流,直接写到网络的IO中,发给slave,减少一次磁盘IO操作,适用于磁盘比较慢,网络带宽比较快),避免全量同步时的磁盘IO。
  • Redis单节点上的内存占用不要太大,较少数据量,减少RDB导致的过多磁盘IO
  • 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步
  • 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力

主从从架构图:
在这里插入图片描述

2.4.小结

简述全量同步和增量同步区别?

  • 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
  • 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave

什么时候执行全量同步?

  • slave节点第一次连接master节点时
  • slave节点断开时间太久,repl_baklog中的offset已经被覆盖时

什么时候执行增量同步?

  • slave节点断开又恢复,并且在repl_baklog中能找到offset时

那么slave节点宕机恢复后可以找master节点同步数据,那master节点宕机之后怎么办?

  • 如果有RDB文件,直接恢复,但是此时是不能进行写操作。这就涉及到Redis的哨兵操作了(健康监测),发现master宕机之后,立马选一个新的slave作为master。

3.Redis哨兵

Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复

3.1.哨兵原理

3.1.1.集群结构和作用

哨兵的结构如图:
在这里插入图片描述
哨兵的作用如下:

  • 监控:Sentinel 会不断检查您的master和slave是否按预期工作
  • 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
  • 通知:Sentinel充当Redis客户端(redisTenplate)的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端(比如说新上位的主机地址等)
3.1.2.集群监控原理

Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:

•主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线(也可能是因为网络阻塞等原因造成的,但是我主观认为你挂掉了)。

•客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半(投票机制)。
在这里插入图片描述

3.1.3.集群故障恢复原理

一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:

  • 首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点(断开时间越长则丢失的数据越多)
  • 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举
  • 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高
  • 最后是判断slave节点的运行id大小,越小优先级越高(随机选择一个)。

当选出一个新的master后,该如何实现切换呢?

流程如下:

  • sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master
  • sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令(广播),让这些slave成为新master的从节点,开始从新的master上同步数据。
  • 最后,sentinel将故障节点标记为slave(修改其配置文件,该问slave),当故障节点恢复后会自动成为新的master的slave节点
    在这里插入图片描述
3.1.4.小结

Sentinel的三个作用是什么?

  • 监控
  • 故障转移
  • 通知

Sentinel如何判断一个redis实例是否健康?

  • 每隔1秒发送一次ping命令,如果超过一定时间没有相向则认为是主观下线
  • 如果大多数sentinel都认为实例主观下线,则判定服务下线

故障转移步骤有哪些?

  • 首先选定一个slave作为新的master,执行slaveof no one
  • 然后让所有节点都执行slaveof 新master
  • 修改故障节点配置,添加slaveof 新master

3.2.搭建哨兵集群

具体搭建流程参考《Redis集群搭建.md》

3.3.RedisTemplate

在Sentinel集群监管下的Redis主从集群,其节点会因为自动故障转移而发生变化,Redis的客户端必须感知这种变化,及时更新连接信息。Spring的RedisTemplate底层利用lettuce实现了节点的感知和自动切换。

下面,我们通过一个测试来实现RedisTemplate集成哨兵机制。

3.3.1.导入Demo工程

首先,我们引入课前资料提供的Demo工程:
在这里插入图片描述

3.3.2.引入依赖

在项目的pom文件中引入依赖:

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
3.3.3.配置Redis地址

然后在配置文件application.yml中指定redis的sentinel相关信息:

spring:
  redis:
    sentinel:
      master: mymaster    # 指定sentinel集群的名称
      nodes:              # 指定redis-sentinel集群地址
        - 192.168.150.101:27001
        - 192.168.150.101:27002
        - 192.168.150.101:27003
3.3.4.配置读写分离

在项目的启动类中,添加一个新的bean:

@Bean
public LettuceClientConfigurationBuilderCustomizer clientConfigurationBuilderCustomizer(){
    return clientConfigurationBuilder -> clientConfigurationBuilder.readFrom(ReadFrom.REPLICA_PREFERRED);
}

这个bean中配置的就是读写策略,包括四种:

  • MASTER:从主节点读取
  • MASTER_PREFERRED:优先从master节点读取,master不可用才读取replica
  • REPLICA:从slave(replica)节点读取
  • REPLICA _PREFERRED:优先从slave(replica)节点读取,所有的slave都不可用才读取master

4.Redis分片集群

4.1.搭建分片集群

主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:

  • 海量数据存储问题(单个Redis中的数据不能太多,占内存,RDB时间久)

  • 高并发写的问题

使用分片集群可以解决上述问题,如图:
在这里插入图片描述
分片集群特征:

  • 集群中有多个master,每个master保存不同数据

  • 每个master都可以有多个slave节点

  • master之间通过ping监测彼此健康状态

  • 客户端请求可以访问集群任意节点,最终都会被转发到正确节点(各个master之间会有路由)

具体搭建流程参考《Redis集群搭建.md》

4.2.散列插槽

4.2.1.插槽原理

Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到:
在这里插入图片描述
数据key不是与节点绑定,而是与插槽绑定,哈希插槽(与MySQL中的一致性哈希分片类似)。redis会根据key的有效部分计算插槽值,分两种情况:

  • key中包含"{}",且“{}”中至少包含1个字符,“{}”中的部分是有效部分
  • key中不包含“{}”,整个key都是有效部分

例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。
在这里插入图片描述
如图,在7001这个节点执行 set a 1 时,对a做hash运算,对16384取余,得到的结果是15495,因此要存储到7003节点。

到了7003后,执行get num时,对num做hash运算,对16384取余,得到的结果是2765,因此需要切换到7001节点

4.2.1.小结

Redis如何判断某个key应该在哪个实例?

  • 将16384个插槽分配到不同的实例
  • 根据key的有效部分计算哈希值,对16384取余
  • 余数作为插槽,寻找插槽所在实例即可,也就是数据不和节点绑定,而是和插槽绑定

如何将同一类数据固定的保存在同一个Redis实例?

  • 这一类数据使用相同的有效部分,例如key都以{typeId}为前缀

4.3.集群伸缩

集群伸缩指的是Redis能够任意的增加或者移除节点redis-cli --cluster 提供了很多操作集群的命令,可以通过下面方式查看:
在这里插入图片描述
比如,添加节点的命令:
在这里插入图片描述

4.3.1.需求分析

需求:向集群中添加一个新的master节点,并向其中存储 num = 10

  • 启动一个新的redis实例,端口为7004
  • 添加7004到之前的集群,并作为一个master节点
  • 给7004节点分配插槽,使得num这个key可以存储到7004实例

这里需要两个新的功能:

  • 添加一个节点到集群中
  • 将部分插槽分配到新插槽(难点
4.3.2.创建新的redis实例

创建一个文件夹:

mkdir 7004

拷贝配置文件:

cp redis.conf /7004

修改配置文件:

sed /s/6379/7004/g 7004/redis.conf

启动

redis-server 7004/redis.conf
4.3.3.添加新节点到redis

添加节点的语法如下:
在这里插入图片描述
执行命令:

redis-cli --cluster add-node  192.168.150.101:7004 192.168.150.101:7001

通过命令查看集群状态:

redis-cli -p 7001 cluster nodes

如图,7004加入了集群,并且默认是一个master节点:
在这里插入图片描述
但是,可以看到7004节点的插槽数量为0,因此没有任何数据可以存储到7004上

# 启动集群中的Redis
redis-cli -c -p 7001
4.3.4.转移插槽

我们要将num存储到7004节点,因此需要先看看num的插槽是多少:
在这里插入图片描述
如上图所示,num的插槽为2765.

我们可以将0~3000的插槽从7001转移到7004,命令格式如下:
在这里插入图片描述
具体命令如下:

建立连接:
在这里插入图片描述
得到下面的反馈:
在这里插入图片描述
询问要移动多少个插槽,我们计划是3000个:
在这里插入图片描述
新的问题来了:

那个node来接收这些插槽?

显然是7004,那么7004节点的id是多少呢?
在这里插入图片描述
复制这个id,然后拷贝到刚才的控制台后:
在这里插入图片描述
这里询问,你的插槽是从哪里移动过来的?
在这里插入图片描述
这里我们要从7001获取,因此填写7001的id:

填完后,点击done,这样插槽转移就准备好了:
在这里插入图片描述

  • all:代表全部,也就是三个节点各转移一部分
  • 具体的id:目标节点的id
  • done:没有了

确认要转移吗?输入yes:
在这里插入图片描述
然后,通过命令查看结果:

可以看到:
在这里插入图片描述
目的达成。

4.4.故障转移

集群初识状态是这样的:
在这里插入图片描述
其中7001、7002、7003都是master,我们计划让7002宕机。

4.4.1.自动故障转移

当集群中有一个master宕机会发生什么呢?

直接停止一个redis实例,例如7002:

redis-cli -p 7002 shutdown

1)首先是该实例与其它实例失去连接

2)然后是疑似宕机:
在这里插入图片描述
3)最后是确定下线,自动提升一个slave为新的master:
在这里插入图片描述
4)当7002再次启动,就会变为一个slave节点了:
在这里插入图片描述

4.4.2.手动故障转移

手动故障转移指的是,某个master老旧,需要更换,首先用一个slave来同步该master的数据,同步完成之后,slave上位,master成为slave,角色互换。

利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:
在这里插入图片描述
这种failover命令可以指定三种模式:

  • 缺省:默认的流程,如图1~6歩
  • force:省略了对offset的一致性校验
  • takeover:直接执行第5歩,忽略数据一致性、忽略master状态和其它master的意见

案例需求:在7002这个slave节点执行手动故障转移,重新夺回master地位

步骤如下:

1)利用redis-cli连接7002这个节点

2)执行cluster failover命令

如图:
在这里插入图片描述
效果:
在这里插入图片描述

4.5.RedisTemplate访问分片集群

RedisTemplate底层同样基于lettuce实现了分片集群的支持,而使用的步骤与哨兵模式基本一致:

1)引入redis的starter依赖

2)配置分片集群地址

3)配置读写分离

与哨兵模式相比,其中只有分片集群的配置方式略有差异,如下:

spring:
  redis:
    cluster:
      nodes:
        - 192.168.150.101:7001
        - 192.168.150.101:7002
        - 192.168.150.101:7003
        - 192.168.150.101:8001
        - 192.168.150.101:8002
        - 192.168.150.101:8003

二、多级缓存

缓存的作用是减轻数据库的压力,缩短服务响应的时间,从而提高服务的并发能力

1.什么是多级缓存

传统的缓存策略一般是请求到达Tomcat(并发能力不高)后,先查询Redis,如果未命中则查询数据库,如图:
在这里插入图片描述
存在下的问题:

•请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈

•Redis缓存失效时,会对数据库产生冲击

多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压力,提升服务性能:

  • 浏览器访问静态资源时,优先读取浏览器本地缓存

  • 访问非静态资源(ajax查询数据)时,访问服务端

  • 请求到达Nginx后,优先读取Nginx本地缓存

  • 如果Nginx本地缓存未命中,则去直接查询Redis(不经过Tomcat)

  • 如果Redis查询未命中,则查询Tomcat

  • 请求进入Tomcat后,优先查询JVM进程缓存

  • 如果JVM进程缓存未命中,则查询数据库
    在这里插入图片描述
    在多级缓存架构中,Nginx内部需要编写本地缓存查询、Redis查询、Tomcat查询的业务逻辑,因此这样的nginx服务不再是一个反向代理服务器,而是一个编写业务的Web服务器了(用作本地缓存、并发能力高)

    因此这样的业务Nginx服务也需要搭建集群来提高并发,再有专门的nginx服务来做反向代理,如图:
    在这里插入图片描述
    另外,我们的Tomcat服务将来也会部署为集群模式:
    在这里插入图片描述
    可见,多级缓存的关键有两个:

  • 一个是在nginx中编写业务,实现nginx本地缓存、Redis、Tomcat的查询

  • 另一个就是在Tomcat中实现JVM进程缓存

其中Nginx编程则会用到OpenResty框架结合Lua这样的语言。

这也是今天课程的难点和重点。

2.JVM进程缓存

了演示多级缓存的案例,我们先准备一个商品查询的业务。

2.1.导入案例

参考课前资料的:《案例导入说明.md》

2.2.初识Caffeine

缓存在日常开发中启动至关重要的作用,由于是存储在内存中,数据的读取速度是非常快的,能大量减少对数据库的访问,减少数据库的压力。我们把缓存分为两类:

  • 分布式缓存,例如Redis:
    • 优点:存储容量更大、可靠性更好、可以在集群间共享
    • 缺点:访问缓存有网络开销
    • 场景:缓存数据量较大、可靠性要求较高、需要在集群间共享
  • 进程本地缓存,例如HashMap、GuavaCache:
    • 优点:读取本地内存,没有网络开销,速度更快
    • 缺点:存储容量有限、可靠性较低、无法共享
    • 场景:性能要求较高,缓存数据量较小

我们今天会利用Caffeine框架来实现JVM进程缓存。

Caffeine是一个基于Java8开发的,提供了近乎最佳命中率的高性能的本地缓存库。目前Spring内部的缓存使用的就是Caffeine。GitHub地址:https://github.com/ben-manes/caffeine

Caffeine的性能非常好,下图是官方给出的性能对比:
在这里插入图片描述
可以看到Caffeine的性能遥遥领先!

缓存使用的基本API:

@Test
void testBasicOps() {
    // 构建cache对象
    Cache<String, String> cache = Caffeine.newBuilder().build();

    // 存数据
    cache.put("gf", "迪丽热巴");

    // 取数据
    String gf = cache.getIfPresent("gf");
    System.out.println("gf = " + gf);

    // 取数据,包含两个参数:
    // 参数一:缓存的key
    // 参数二:Lambda表达式,表达式参数就是缓存的key,方法体是查询数据库的逻辑
    // 优先根据key查询JVM缓存,如果未命中,则执行参数二的Lambda表达式
    String defaultGF = cache.get("defaultGF", key -> {
        // 根据key去数据库查询数据
        return "柳岩";
    });
    System.out.println("defaultGF = " + defaultGF);
}

Caffeine既然是缓存的一种,肯定需要有缓存的清除策略,不然的话内存总会有耗尽的时候。

Caffeine提供了三种缓存驱逐策略:

  • 基于容量:设置缓存的数量上限

    // 创建缓存对象
    Cache<String, String> cache = Caffeine.newBuilder()
        .maximumSize(1) // 设置缓存大小上限为 1
        .build();
    
  • 基于时间:设置缓存的有效时间

    // 创建缓存对象
    Cache<String, String> cache = Caffeine.newBuilder()
        // 设置缓存有效期为 10 秒,从最后一次写入开始计时 
        .expireAfterWrite(Duration.ofSeconds(10)) 
        .build();
    
  • 基于引用:设置缓存为软引用或弱引用,利用GC来回收缓存数据。性能较差,不建议使用。

注意:在默认情况下,当一个缓存元素过期的时候,Caffeine不会自动立即将其清理和驱逐。而是在一次读或写操作后,或者在空闲时间完成对失效数据的驱逐。

2.3.实现JVM进程缓存

2.3.1.需求

利用Caffeine实现下列需求:

  • 给根据id查询商品的业务添加缓存,缓存未命中时查询数据库
  • 给根据id查询商品库存的业务添加缓存,缓存未命中时查询数据库
  • 缓存初始大小为100
  • 缓存上限为10000
2.3.2.实现

首先,我们需要定义两个Caffeine的缓存对象,分别保存商品、库存的缓存数据。

在item-service的com.heima.item.config包下定义CaffeineConfig类:

package com.heima.item.config;

import com.github.benmanes.caffeine.cache.Cache;
import com.github.benmanes.caffeine.cache.Caffeine;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class CaffeineConfig {

    @Bean
    public Cache<Long, Item> itemCache(){
        return Caffeine.newBuilder()
                .initialCapacity(100)
                .maximumSize(10_000)
                .build();
    }

    @Bean
    public Cache<Long, ItemStock> stockCache(){
        return Caffeine.newBuilder()
                .initialCapacity(100)
                .maximumSize(10_000)
                .build();
    }
}

然后,修改item-service中的com.heima.item.web包下的ItemController类,添加缓存逻辑:

@RestController
@RequestMapping("item")
public class ItemController {

    @Autowired
    private IItemService itemService;
    @Autowired
    private IItemStockService stockService;

    @Autowired
    private Cache<Long, Item> itemCache;
    @Autowired
    private Cache<Long, ItemStock> stockCache;
    
    // ...其它略
    
    @GetMapping("/{id}")
    public Item findById(@PathVariable("id") Long id) {
        return itemCache.get(id, key -> itemService.query()
                .ne("status", 3).eq("id", key)
                .one()
        );
    }

    @GetMapping("/stock/{id}")
    public ItemStock findStockById(@PathVariable("id") Long id) {
        return stockCache.get(id, key -> stockService.getById(key));
    }
}

3.Lua语法入门

Nginx编程需要用到Lua语言,因此我们必须先入门Lua的基本语法。

3.1.初识Lua

Lua 是一种轻量小巧的脚本语言,用标准C语言编写并以源代码形式开放, 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。官网:https://www.lua.org/
在这里插入图片描述
Lua经常嵌入到C语言开发的程序中,例如游戏开发、游戏插件等。

Nginx本身也是C语言开发,因此也允许基于Lua做拓展。

3.1.HelloWorld

CentOS7默认已经安装了Lua语言环境,所以可以直接运行Lua代码。

1)在Linux虚拟机的任意目录下,新建一个hello.lua文件
在这里插入图片描述
2)添加下面的内容

print("Hello World!")  

3)运行
在这里插入图片描述

3.2.变量和循环

学习任何语言必然离不开变量,而变量的声明必须先知道数据的类型。

3.2.1.Lua的数据类型

Lua中支持的常见数据类型包括:
在这里插入图片描述
另外,Lua提供了type()函数来判断一个变量的数据类型:
在这里插入图片描述

3.2.2.声明变量

Lua声明变量的时候无需指定数据类型,而是用local来声明变量为局部变量:

-- 声明字符串,可以用单引号或双引号,
local str = 'hello'
-- 字符串拼接可以使用 ..
local str2 = 'hello' .. 'world'
-- 声明数字
local num = 21
-- 声明布尔类型
local flag = true

Lua中的table类型既可以作为数组,又可以作为Java中的map来使用。数组就是特殊的table,key是数组角标而已:

-- 声明数组 ,key为角标的 table
local arr = {'java', 'python', 'lua'}
-- 声明table,类似java的map
local map =  {name='Jack', age=21}

Lua中的数组角标是从1开始,访问的时候与Java中类似:

-- 访问数组,lua数组的角标从1开始
print(arr[1])

Lua中的table可以用key来访问:

-- 访问table
print(map['name'])
print(map.name)
3.2.3.循环

对于table,我们可以利用for循环来遍历。不过数组和普通table遍历略有差异。

遍历数组:

-- 声明数组 key为索引的 table
local arr = {'java', 'python', 'lua'}
-- 遍历数组
for index,value in ipairs(arr) do
    print(index, value) 
end

遍历普通table

-- 声明map,也就是table
local map = {name='Jack', age=21}
-- 遍历table
for key,value in pairs(map) do
   print(key, value) 
end

3.3.条件控制、函数

Lua中的条件控制和函数声明与Java类似。

3.3.1.函数

定义函数的语法:

functon 函数名( argument1, argument2..., argumentn)
    -- 函数体
    return 返回值
end

例如,定义一个函数,用来打印数组:

function printArr(arr)
    for index, value in ipairs(arr) do
        print(value)
    end
end
3.3.2.条件控制

类似Java的条件控制,例如if、else语法:

if(布尔表达式)
then
   --[ 布尔表达式为 true 时执行该语句块 --]
else
   --[ 布尔表达式为 false 时执行该语句块 --]
end

与java不同,布尔表达式中的逻辑运算是基于英文单词:
在这里插入图片描述

3.3.3.案例

需求:自定义一个函数,可以打印table,当参数为nil时,打印错误信息

function printArr(arr)
    if not arr then
        print('数组不能为空!')
    end
    for index, value in ipairs(arr) do
        print(value)
    end
end

4.实现多级缓存

多级缓存的实现离不开Nginx编程,而Nginx编程又离不开OpenResty。

4.1.安装OpenResty

OpenResty® 是一个基于 Nginx的高性能 Web 平台,用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。具备下列特点:

  • 具备Nginx的完整功能
  • 基于Lua语言进行扩展,集成了大量精良的 Lua 库、第三方模块
  • 允许使用Lua自定义业务逻辑自定义库

官方网站: https://openresty.org/cn/
在这里插入图片描述
安装Lua可以参考资料提供的《安装OpenResty.md》

4.2.OpenResty快速入门

我们希望达到的多级缓存架构如图:
在这里插入图片描述
其中:

  • windows上的nginx用来做反向代理服务,将前端的查询商品的ajax请求代理到OpenResty集群

  • OpenResty集群用来编写多级缓存业务

4.2.1.反向代理流程

现在,商品详情页使用的是假的商品数据。不过在浏览器中,可以看到页面有发起ajax请求查询真实商品数据。

这个请求如下:
在这里插入图片描述
请求地址是localhost,端口是80,就被windows上安装的Nginx服务给接收到了。然后代理给了OpenResty集群:
在这里插入图片描述
我们需要在OpenResty中编写业务,查询商品数据并返回到浏览器。

但是这次,我们先在OpenResty接收请求,返回假的商品数据。

4.2.2.OpenResty监听请求

OpenResty的很多功能都依赖于其目录下的Lua库,需要在nginx.conf中指定依赖库的目录,并导入依赖:
1)添加对OpenResty的Lua模块的加载

修改/usr/local/openresty/nginx/conf/nginx.conf文件,在其中的http里面,添加下面代码:

#lua 模块
lua_package_path "/usr/local/openresty/lualib/?.lua;;";
#c模块     
lua_package_cpath "/usr/local/openresty/lualib/?.so;;";  

2)监听/api/item路径

修改/usr/local/openresty/nginx/conf/nginx.conf文件,在nginx.conf的server里面,添加对/api/item这个路径的监听:

location  /api/item {
    # 默认的响应类型
    default_type application/json;
    # 响应结果由lua/item.lua文件来决定
    content_by_lua_file lua/item.lua;
}

这个监听,就类似于SpringMVC中的@GetMapping("/api/item")做路径映射。

content_by_lua_file lua/item.lua则相当于调用item.lua这个文件,执行其中的业务,把结果返回给用户。相当于java中调用service。

4.2.3.编写item.lua

1)在/usr/loca/openresty/nginx目录创建文件夹:lua
在这里插入图片描述
2)在/usr/loca/openresty/nginx/lua文件夹下,新建文件:item.lua
在这里插入图片描述
3)编写item.lua,返回假数据

item.lua中,利用ngx.say()函数返回数据到Response中

ngx.say('{"id":10001,"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')

4)重新加载配置

nginx -s reload

刷新商品页面:http://localhost/item.html?id=1001,即可看到效果:
在这里插入图片描述

4.3.请求参数处理

上一节中,我们在OpenResty接收前端请求,但是返回的是假数据。

要返回真实数据,必须根据前端传递来的商品id,查询商品信息才可以。

那么如何获取前端传递的商品参数呢?

4.3.1.获取参数的API

OpenResty中提供了一些API用来获取不同类型的前端请求参数:
在这里插入图片描述
更改配置文件:
在这里插入图片描述
更改Lua脚本文件:
在这里插入图片描述

4.3.2.获取参数并返回

在前端发起的ajax请求如图:
在这里插入图片描述
可以看到商品id是以路径占位符方式传递的,因此可以利用正则表达式匹配的方式来获取ID

1)获取商品id
修改/usr/loca/openresty/nginx/nginx.conf文件中监听/api/item的代码,利用正则表达式获取ID:

location ~ /api/item/(\d+) {
    # 默认的响应类型
    default_type application/json;
    # 响应结果由lua/item.lua文件来决定
    content_by_lua_file lua/item.lua;
}

2)拼接ID并返回

修改/usr/loca/openresty/nginx/lua/item.lua文件,获取id并拼接到结果中返回:

-- 获取商品id
local id = ngx.var[1]
-- 拼接并返回
ngx.say('{"id":' .. id .. ',"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')

3)重新加载并测试

运行命令以重新加载OpenResty配置:

nginx -s reload

刷新页面可以看到结果中已经带上了ID:
在这里插入图片描述

4.4.查询Tomcat

拿到商品ID后,本应去缓存中查询商品信息,不过目前我们还未建立nginx、redis缓存。
在这里插入图片描述

因此,这里我们先根据商品id去tomcat查询商品信息。我们实现如图部分:
在这里插入图片描述
需要注意的是,我们的OpenResty是在虚拟机,Tomcat是在Windows电脑上。两者IP一定不要搞错了(只要将虚拟机上的IP最后一位数字改为1就是Win上的IP地址)。
在这里插入图片描述

4.4.1.发送http请求的API

在这里插入图片描述
nginx提供了内部API用以发送http请求:

local resp = ngx.location.capture("/path",{
    method = ngx.HTTP_GET,   -- 请求方式
    args = {a=1,b=2},  -- get方式传参数
})

返回的响应内容包括:

  • resp.status:响应状态码
  • resp.header:响应头,是一个table
  • resp.body:响应体,就是响应数据

注意:这里的path是路径,并不包含IP和端口。这个请求会被nginx内部的server监听并处理(我监听我自己)。

但是我们希望这个请求发送到Tomcat服务器,所以还需要编写一个server来对这个路径做反向代理:

 location /path {
     # 这里是windows电脑的ip和Java服务端口,需要确保windows防火墙处于关闭状态
     proxy_pass http://192.168.150.1:8081; 
 }

原理如图:
在这里插入图片描述
更改配置文件:
在这里插入图片描述

4.4.2.封装http工具

下面,我们封装一个发送Http请求的工具,基于ngx.location.capture来实现查询tomcat。

1)添加反向代理,到windows的Java服务

因为item-service中的接口都是/item开头,所以我们监听/item路径,代理到windows上的tomcat服务。

修改 /usr/local/openresty/nginx/conf/nginx.conf文件,添加一个location:

location /item {
    proxy_pass http://192.168.150.1:8081;
}

以后,只要我们调用ngx.location.capture("/item"),就一定能发送请求到windows的tomcat服务。

2)封装工具类

之前我们说过,OpenResty启动时会加载以下两个目录中的工具文件:
在这里插入图片描述
所以,自定义的http工具也需要放到这个目录下。

/usr/local/openresty/lualib目录下,新建一个common.lua文件:

vi /usr/local/openresty/lualib/common.lua

内容如下:

-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
    local resp = ngx.location.capture(path,{
        method = ngx.HTTP_GET,
        args = params,
    })
    if not resp then
        -- 记录错误信息,返回404
        ngx.log(ngx.ERR, "http请求查询失败, path: ", path , ", args: ", args)
        ngx.exit(404)
    end
    return resp.body
end
-- 将方法导出
local _M = {  
    read_http = read_http
}  
return _M

这个工具将read_http函数封装到_M这个table类型的变量中,并且返回,这类似于导出。

使用的时候,可以利用require('common')来导入该函数库,这里的common是函数库的文件名。

3)实现商品查询

最后,我们修改/usr/local/openresty/lua/item.lua文件,利用刚刚封装的函数库实现对tomcat的查询:

-- 引入自定义common工具模块(在lualib目录下,直接导入不加路径就行),返回值是common中返回的 _M
local common = require("common")
-- 从 common中获取read_http这个函数
local read_http = common.read_http
-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)
-- JSON需要转换为lua的table对象,再进行操作
-- 用CJSON工具
-- 重新加载nginx,nginx -s reload
-- 返回数据打印
ngx.say(itemJSON )

这里查询到的结果是json字符串,并且包含商品、库存两个json字符串,页面最终需要的是把两个json拼接为一个json:

这就需要我们先把JSON变为lua的table,完成数据整合后,再转为JSON。

4.4.3.CJSON工具类

OpenResty提供了一个cjson的模块用来处理JSON的序列化和反序列化。

官方地址: https://github.com/openresty/lua-cjson/

1)引入cjson模块:

local cjson = require "cjson"

2)序列化:

local obj = {
    name = 'jack',
    age = 21
}
-- 把 table 序列化为 json
local json = cjson.encode(obj)

3)反序列化:

local json = '{"name": "jack", "age": 21}'
-- 反序列化 json为 table
local obj = cjson.decode(json);
print(obj.name)
4.4.4.实现Tomcat查询

下面,我们修改之前的item.lua中的业务,添加json处理功能:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
-- 导入cjson库
local cjson = require('cjson')

-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)

-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)

-- 组合数据
item.stock = stock.stock
item.sold = stock.sold

-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))
4.4.5.基于ID负载均衡

刚才的代码中,我们的tomcat是单机部署。而实际开发中,tomcat一定是集群模式:
在这里插入图片描述
因此,OpenResty需要对tomcat集群做负载均衡。

而默认的负载均衡规则是轮询模式,当我们查询/item/10001时:

  • 第一次会访问8081端口的tomcat服务,在该服务内部就形成了JVM进程缓存
  • 第二次会访问8082端口的tomcat服务,该服务内部没有JVM缓存(因为JVM缓存无法共享),会查询数据库

你看,因为轮询的原因,第一次查询8081形成的JVM缓存并未生效,直到下一次再次访问到8081时才可以生效,缓存命中率太低了。

怎么办?

如果能让同一个商品,每次查询时都访问同一个tomcat服务,那么JVM缓存就一定能生效了。

也就是说,我们需要根据商品id做负载均衡,而不是轮询。

1)原理

nginx提供了基于请求路径做负载均衡的算法:

nginx根据请求路径做hash运算,把得到的数值对tomcat服务的数量取余,余数是几,就访问第几个服务,实现负载均衡。

例如:

  • 我们的请求路径是 /item/10001
  • tomcat总数为2台(8081、8082)
  • 对请求路径/item/1001做hash运算求余的结果为1
  • 则访问第一个tomcat服务,也就是8081

只要id不变,每次hash运算结果也不会变,那就可以保证同一个商品,一直访问同一个tomcat服务,确保JVM缓存生效。
在这里插入图片描述

2)实现

修改/usr/local/openresty/nginx/conf/nginx.conf文件,实现基于ID做负载均衡。

首先,定义tomcat集群,并设置基于路径做负载均衡:

# tomcat集群配置
upstream tomcat-cluster {
	# 对请求的路径做哈希运算
    hash $request_uri;
    # tomcat集群的地址
    server 192.168.150.1:8081;
    server 192.168.150.1:8082;
}

然后,修改对tomcat服务的反向代理,目标指向tomcat集群:

location /item {
    proxy_pass http://tomcat-cluster;
}

重新加载OpenResty

nginx -s reload
3)测试

启动两台tomcat服务:
在这里插入图片描述
同时启动:
在这里插入图片描述
清空日志后,再次访问页面,可以看到不同id的商品,访问到了不同的tomcat服务:
在这里插入图片描述
在这里插入图片描述

4.5.Redis缓存预热

在这里插入图片描述
Redis缓存会面临冷启动问题:

冷启动:服务刚刚启动时,Redis中并没有缓存,如果所有商品数据都在第一次查询时添加缓存,可能会给数据库带来较大压力

缓存预热:在实际开发中,我们可以利用大数据统计用户访问的热点数据,在项目启动时将这些热点数据提前查询并保存到Redis中

我们数据量较少,并且没有数据统计相关功能,目前可以在启动时将所有数据都放入缓存中。

1)利用Docker安装Redis

docker run --name redis -p 6379:6379 -d redis redis-server --appendonly yes

2)在item-service服务中引入Redis依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

3)配置Redis地址

spring:
  redis:
    host: 192.168.150.101

4)编写初始化类

缓存预热需要在项目启动时完成,并且必须是拿到RedisTemplate之后。

这里我们利用InitializingBean接口来实现,因为InitializingBean可以在对象被Spring创建并且成员变量全部注入后执行,用作缓存预热最好不过。

package com.heima.item.config;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import com.heima.item.service.IItemService;
import com.heima.item.service.IItemStockService;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;

import java.util.List;

@Component
public class RedisHandler implements InitializingBean {

    @Autowired
    private StringRedisTemplate redisTemplate;

    @Autowired
    private IItemService itemService;
    @Autowired
    private IItemStockService stockService;
	// JSON序列化工具
    private static final ObjectMapper MAPPER = new ObjectMapper();
	
	// 此方法在自动注入完成之后调用
    @Override
    public void afterPropertiesSet() throws Exception {
        // 初始化缓存
        // 1.查询商品信息
        List<Item> itemList = itemService.list();
        // 2.放入缓存
        for (Item item : itemList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(item);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
        }

        // 3.查询商品库存信息
        List<ItemStock> stockList = stockService.list();
        // 4.放入缓存
        for (ItemStock stock : stockList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(stock);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
        }
    }
}

4.6.查询Redis缓存

现在,Redis缓存已经准备就绪,我们可以再OpenResty中实现查询Redis的逻辑了。如下图红框所示:
在这里插入图片描述
当请求进入OpenResty之后:

  • 优先查询Redis缓存
  • 如果Redis缓存未命中,再查询Tomcat
4.6.1.封装Redis工具

OpenResty提供了操作Redis的模块,我们只要引入该模块就能直接使用。但是为了方便,我们将Redis操作封装到之前的common.lua工具库中。

修改/usr/local/openresty/lualib/common.lua文件:

1)引入Redis模块,并初始化Redis对象

-- 导入redis
-- 目录名.文件名
local redis = require('resty.redis')
-- 初始化redis,创建对象
local red = redis:new()
-- 建立联接的超时时间,发送请求的超时时间,响应结果的超时时间,单位毫秒
red:set_timeouts(1000, 1000, 1000)

2)封装函数,用来释放Redis连接,其实是放入连接池

-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
    local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
    local pool_size = 100 --连接池大小
    local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
    if not ok then
        ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
    end
end

3)封装函数,根据key查询Redis数据

-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
    -- 获取一个连接
    local ok, err = red:connect(ip, port)
    if not ok then
        ngx.log(ngx.ERR, "连接redis失败 : ", err)
        return nil
    end
    -- 查询redis
    local resp, err = red:get(key)
    -- 查询失败处理
    if not resp then
        ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
    end
    --得到的数据为空处理
    if resp == ngx.null then
        resp = nil
        ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
    end
    close_redis(red)
    return resp
end

4)导出

-- 将方法导出
local _M = {  
    read_http = read_http,
    read_redis = read_redis
}  
return _M

完整的common.lua:

-- 导入redis
local redis = require('resty.redis')
-- 初始化redis
local red = redis:new()
red:set_timeouts(1000, 1000, 1000)

-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
    local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
    local pool_size = 100 --连接池大小
    local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
    if not ok then
        ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
    end
end

-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
    -- 获取一个连接
    local ok, err = red:connect(ip, port)
    if not ok then
        ngx.log(ngx.ERR, "连接redis失败 : ", err)
        return nil
    end
    -- 查询redis
    local resp, err = red:get(key)
    -- 查询失败处理
    if not resp then
        ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
    end
    --得到的数据为空处理
    if resp == ngx.null then
        resp = nil
        ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
    end
    close_redis(red)
    return resp
end

-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
    local resp = ngx.location.capture(path,{
        method = ngx.HTTP_GET,
        args = params,
    })
    if not resp then
        -- 记录错误信息,返回404
        ngx.log(ngx.ERR, "http查询失败, path: ", path , ", args: ", args)
        ngx.exit(404)
    end
    return resp.body
end
-- 将方法导出
local _M = {  
    read_http = read_http,
    read_redis = read_redis
}  
return _M
4.6.2.实现Redis查询

接下来,我们就可以去修改item.lua文件,实现对Redis的查询了。

查询逻辑是:

  • 根据id查询Redis
  • 如果查询失败则继续查询Tomcat
  • 将查询结果返回

1)修改/usr/local/openresty/lua/item.lua文件,添加一个查询函数:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 封装查询函数
function read_data(key, path, params)
    -- 查询本地缓存
    local val = read_redis("127.0.0.1", 6379, key)
    -- 判断查询结果
    if not val then
        ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
        -- redis查询失败,去查询http
        val = read_http(path, params)
    end
    -- 返回数据
    return val
end

2)而后修改商品查询、库存查询的业务:
在这里插入图片描述
3)完整的item.lua代码:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')

-- 封装查询函数
function read_data(key, path, params)
    -- 查询本地缓存
    local val = read_redis("127.0.0.1", 6379, key)
    -- 判断查询结果
    if not val then
        ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
        -- redis查询失败,去查询http
        val = read_http(path, params)
    end
    -- 返回数据
    return val
end

-- 获取路径参数
local id = ngx.var[1]

-- 查询商品信息
local itemJSON = read_data("item:id:" .. id,  "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, "/item/stock/" .. id, nil)

-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold

-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

4.7.Nginx本地缓存

现在,整个多级缓存中只差最后一环,也就是nginx的本地缓存了。如图:
在这里插入图片描述

4.7.1.本地缓存API

OpenResty为Nginx提供了shard dict的功能,可以在nginx的多个worker线程之间共享数据,实现缓存功能。

1)开启共享字典,在nginx.conf的http里面添加配置:

 # 共享字典,也就是本地缓存,名称叫做:item_cache,大小150m
 lua_shared_dict item_cache 150m; 

2)操作共享字典:

-- 获取本地缓存对象
local item_cache = ngx.shared.item_cache
-- 存储, 指定key、value、过期时间,单位s,默认为0代表永不过期
item_cache:set('key', 'value', 1000)
-- 读取
local val = item_cache:get('key')
4.7.2.实现本地缓存查询

在这里插入图片描述

1)修改/usr/local/openresty/lua/item.lua文件,修改read_data查询函数,添加本地缓存逻辑:

-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache

-- 封装查询函数
function read_data(key, expire, path, params)
    -- 查询本地缓存
    local val = item_cache:get(key)
    if not val then
        ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
        -- 查询redis
        val = read_redis("127.0.0.1", 6379, key)
        -- 判断查询结果
        if not val then
            ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
            -- redis查询失败,去查询http
            val = read_http(path, params)
        end
    end
    -- 查询成功,把数据写入本地缓存
    item_cache:set(key, val, expire)
    -- 返回数据
    return val
end

2)修改item.lua中查询商品和库存的业务,实现最新的read_data函数:
在这里插入图片描述
其实就是多了缓存时间参数,过期后nginx缓存会自动删除,下次访问即可更新缓存。

这里给商品基本信息设置超时时间为30分钟,库存为1分钟。

因为库存更新频率较高,如果缓存时间过长,可能与数据库差异较大。

3)完整的item.lua文件:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')
-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache

-- 封装查询函数
function read_data(key, expire, path, params)
    -- 查询本地缓存
    local val = item_cache:get(key)
    if not val then
        ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
        -- 查询redis
        val = read_redis("127.0.0.1", 6379, key)
        -- 判断查询结果
        if not val then
            ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
            -- redis查询失败,去查询http
            val = read_http(path, params)
        end
    end
    -- 查询成功,把数据写入本地缓存
    item_cache:set(key, val, expire)
    -- 返回数据
    return val
end

-- 获取路径参数
local id = ngx.var[1]

-- 查询商品信息
local itemJSON = read_data("item:id:" .. id, 1800,  "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, 60, "/item/stock/" .. id, nil)

-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold

-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

5.缓存同步

大多数情况下,浏览器查询到的都是缓存数据,如果缓存数据与数据库数据存在较大差异,可能会产生比较严重的后果。

所以我们必须保证数据库数据、缓存数据的一致性,这就是缓存与数据库的同步。

5.1.数据同步策略

缓存数据同步的常见方式有三种:

设置有效期:给缓存设置有效期,到期后自动删除。再次查询时更新(被动策略,时效性差)

  • 优势:简单、方便
  • 缺点:时效性差,缓存过期之前可能不一致
  • 场景:更新频率较低,时效性要求低的业务

同步双写:在修改数据库的同时,直接修改缓存(形成一个事务)

  • 优势:时效性强,缓存与数据库强一致
  • 缺点:有代码侵入,耦合度高;
  • 场景:对一致性、时效性要求较高的缓存数据

**异步通知:**修改数据库时发送事件通知相关服务监听到通知后修改缓存数据

  • 优势:低耦合,可以同时通知多个缓存服务
  • 缺点:时效性一般,可能存在中间不一致状态
  • 场景:时效性要求一般,有多个服务需要同步

而异步实现又可以基于MQ或者Canal来实现:

1)基于MQ的异步通知:
在这里插入图片描述
解读:

  • 商品服务完成对数据的修改后,只需要发送一条消息到MQ中。
  • 缓存服务监听MQ消息,然后完成对缓存的更新

依然有少量的代码侵入。

2)基于Canal的通知
在这里插入图片描述
解读:

  • 商品服务完成商品修改后,业务直接结束,没有任何代码侵入
  • Canal监听MySQL变化,当发现变化后,立即通知缓存服务
  • 缓存服务接收到canal通知,更新缓存

代码零侵入

5.2.安装Canal

5.2.1.认识Canal

Canal [kə’næl],译意为水道/管道/沟渠,canal是阿里巴巴旗下的一款开源项目,基于Java开发。基于数据库增量日志解析,提供增量数据订阅&消费。GitHub的地址:https://github.com/alibaba/canal

Canal是基于mysql的主从同步来实现的,MySQL主从同步的原理如下:
在这里插入图片描述

  • 1)MySQL master 将数据变更写入二进制日志( binary log),其中记录的数据叫做binary log events
  • 2)MySQL slave 将 master 的 binary log events拷贝到它的中继日志(relay log)
  • 3)MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据

而Canal就是把自己伪装成MySQL的一个slave节点,从而监听master的binary log变化。再把得到的变化信息通知给Canal的客户端,进而完成对其它数据库的同步。
在这里插入图片描述

5.2.2.安装Canal

安装和配置Canal参考资料文档

5.3.监听Canal

Canal提供了各种语言的客户端,当Canal监听到binlog变化时,会通知Canal的客户端。
在这里插入图片描述
我们可以利用Canal提供的Java客户端,监听Canal通知消息。当收到变化的消息时,完成对缓存的更新。

不过这里我们会使用GitHub上的第三方开源的canal-starter客户端。地址:https://github.com/NormanGyllenhaal/canal-client

与SpringBoot完美整合,自动装配,比官方客户端要简单好用很多。

5.3.1.引入依赖:
<dependency>
    <groupId>top.javatool</groupId>
    <artifactId>canal-spring-boot-starter</artifactId>
    <version>1.2.1-RELEASE</version>
</dependency>
5.3.2.编写配置:
canal:
  destination: heima # canal的集群名字,要与安装canal时设置的名称一致
  server: 192.168.150.101:11111 # canal服务地址
5.3.3.修改Item实体类

在这里插入图片描述

通过@Id、@Column、等注解完成Item与数据库表字段的映射:

package com.heima.item.pojo;

import com.baomidou.mybatisplus.annotation.IdType;
import com.baomidou.mybatisplus.annotation.TableField;
import com.baomidou.mybatisplus.annotation.TableId;
import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Data;
import org.springframework.data.annotation.Id;
import org.springframework.data.annotation.Transient;

import javax.persistence.Column;
import java.util.Date;

@Data
@TableName("tb_item")
public class Item {
    @TableId(type = IdType.AUTO)
    @Id
    private Long id;//商品id
    @Column(name = "name")
    private String name;//商品名称
    private String title;//商品标题
    private Long price;//价格(分)
    private String image;//商品图片
    private String category;//分类名称
    private String brand;//品牌名称
    private String spec;//规格
    private Integer status;//商品状态 1-正常,2-下架
    private Date createTime;//创建时间
    private Date updateTime;//更新时间
    @TableField(exist = false)
    @Transient
    private Integer stock;
    @TableField(exist = false)
    @Transient
    private Integer sold;
}
5.3.4.编写监听器

在这里插入图片描述
通过实现EntryHandler<T>接口编写监听器,监听Canal消息。注意两点:

  • 实现类通过@CanalTable("tb_item")指定监听的表信息
  • EntryHandler的泛型是与表对应的实体类
package com.heima.item.canal;

import com.github.benmanes.caffeine.cache.Cache;
import com.heima.item.config.RedisHandler;
import com.heima.item.pojo.Item;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import top.javatool.canal.client.annotation.CanalTable;
import top.javatool.canal.client.handler.EntryHandler;

@CanalTable("tb_item")
@Component
public class ItemHandler implements EntryHandler<Item> {

    @Autowired
    private RedisHandler redisHandler;
    @Autowired
    private Cache<Long, Item> itemCache;

    @Override
    public void insert(Item item) {
        // 写数据到JVM进程缓存
        itemCache.put(item.getId(), item);
        // 写数据到redis缓存
        redisHandler.saveItem(item);
    }

    @Override
    public void update(Item before, Item after) {
        // 写数据到JVM进程缓存
        itemCache.put(after.getId(), after);
        // 写数据到redis缓存
        redisHandler.saveItem(after);
    }

    @Override
    public void delete(Item item) {
        // 删除数据到JVM进程缓存
        itemCache.invalidate(item.getId());
        // 删除数据到redis缓存
        redisHandler.deleteItemById(item.getId());
    }
}

在这里对Redis的操作都封装到了RedisHandler这个对象中,是我们之前做缓存预热时编写的一个类,内容如下:

package com.heima.item.config;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import com.heima.item.service.IItemService;
import com.heima.item.service.IItemStockService;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;

import java.util.List;

@Component
public class RedisHandler implements InitializingBean {

    @Autowired
    private StringRedisTemplate redisTemplate;

    @Autowired
    private IItemService itemService;
    @Autowired
    private IItemStockService stockService;

    private static final ObjectMapper MAPPER = new ObjectMapper();

    @Override
    public void afterPropertiesSet() throws Exception {
        // 初始化缓存
        // 1.查询商品信息
        List<Item> itemList = itemService.list();
        // 2.放入缓存
        for (Item item : itemList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(item);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
        }

        // 3.查询商品库存信息
        List<ItemStock> stockList = stockService.list();
        // 4.放入缓存
        for (ItemStock stock : stockList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(stock);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
        }
    }

    public void saveItem(Item item) {
        try {
            String json = MAPPER.writeValueAsString(item);
            redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
        } catch (JsonProcessingException e) {
            throw new RuntimeException(e);
        }
    }

    public void deleteItemById(Long id) {
        redisTemplate.delete("item:id:" + id);
    }
}

6.总结

客户端304状态码,表示请求的静态资源命中浏览器客户端缓存,直接返回。
在这里插入图片描述
在这里插入图片描述

三、Redis最佳实践

1.Redis键值设计

1.1.优雅的key结构

在这里插入图片描述
演示:
在这里插入图片描述

1.2.拒绝BigKey

在这里插入图片描述
通常可以采用MEMORY USAGE key 来查看一个key的所占字节数,但通常比较消耗CPU性能,采用的命令有所改变,如下:
在这里插入图片描述
在这里插入图片描述

演示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
找出BigKey的测试代码(自定义Scan):

package com.heima.test;

import com.heima.jedis.util.JedisConnectionFactory;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.ScanResult;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class JedisTest {
    private Jedis jedis;

    @BeforeEach
    void setUp() {
        // 1.建立连接
        // jedis = new Jedis("192.168.150.101", 6379);
        jedis = JedisConnectionFactory.getJedis();
        // 2.设置密码
        jedis.auth("123321");
        // 3.选择库
        jedis.select(0);
    }

    @Test
    void testString() {
        // 存入数据
        String result = jedis.set("name", "虎哥");
        System.out.println("result = " + result);
        // 获取数据
        String name = jedis.get("name");
        System.out.println("name = " + name);
    }

    @Test
    void testHash() {
        // 插入hash数据
        jedis.hset("user:1", "name", "Jack");
        jedis.hset("user:1", "age", "21");

        // 获取
        Map<String, String> map = jedis.hgetAll("user:1");
        System.out.println(map);
    }


    final static int STR_MAX_LEN = 10 * 1024;
    final static int HASH_MAX_LEN = 500;

    @Test
    void testScan() {
        int maxLen = 0;
        long len = 0;

        String cursor = "0";
        do {
            // 扫描并获取一部分key
            ScanResult<String> result = jedis.scan(cursor);
            // 记录cursor
            cursor = result.getCursor();
            List<String> list = result.getResult();
            if (list == null || list.isEmpty()) {
                break;
            }
            // 遍历
            for (String key : list) {
                // 判断key的类型
                String type = jedis.type(key);
                switch (type) {
                    case "string":
                        len = jedis.strlen(key);
                        maxLen = STR_MAX_LEN;
                        break;
                    case "hash":
                        len = jedis.hlen(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    case "list":
                        len = jedis.llen(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    case "set":
                        len = jedis.scard(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    case "zset":
                        len = jedis.zcard(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    default:
                        break;
                }
                if (len >= maxLen) {
                    System.out.printf("Found big key : %s, type: %s, length or size: %d %n", key, type, len);
                }
            }
        } while (!cursor.equals("0"));
    }
    
    @AfterEach
    void tearDown() {
        if (jedis != null) {
            jedis.close();
        }
    }
}

在这里插入图片描述
Redis-Rdb-Tools网站(离线分析)
网络监控(购买阿里云的监控服务):
在这里插入图片描述
在这里插入图片描述
演示:
在这里插入图片描述

1.3.恰当的数据类型

在这里插入图片描述
在这里插入图片描述
演示(调整entry的大小):
在这里插入图片描述
在这里插入图片描述
方案三:将一个大的Hash拆分成很多个晓得Hash。
在这里插入图片描述
测试:

package com.heima.test;

import com.heima.jedis.util.JedisConnectionFactory;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.ScanResult;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class JedisTest {
    private Jedis jedis;

    @BeforeEach
    void setUp() {
        // 1.建立连接
        // jedis = new Jedis("192.168.150.101", 6379);
        jedis = JedisConnectionFactory.getJedis();
        // 2.设置密码
        jedis.auth("123321");
        // 3.选择库
        jedis.select(0);
    }

    @Test
    void testString() {
        // 存入数据
        String result = jedis.set("name", "虎哥");
        System.out.println("result = " + result);
        // 获取数据
        String name = jedis.get("name");
        System.out.println("name = " + name);
    }

    @Test
    void testHash() {
        // 插入hash数据
        jedis.hset("user:1", "name", "Jack");
        jedis.hset("user:1", "age", "21");

        // 获取
        Map<String, String> map = jedis.hgetAll("user:1");
        System.out.println(map);
    }
    
    @Test
    void testSetBigKey() {
        Map<String, String> map = new HashMap<>();
        for (int i = 1; i <= 650; i++) {
            map.put("hello_" + i, "world!");
        }
        jedis.hmset("m2", map);
    }

    @Test
    void testBigHash() {
        Map<String, String> map = new HashMap<>();
        for (int i = 1; i <= 100000; i++) {
            map.put("key_" + i, "value_" + i);
        }
        jedis.hmset("test:big:hash", map);
    }

    @Test
    void testBigString() {
        for (int i = 1; i <= 100000; i++) {
            jedis.set("test:str:key_" + i, "value_" + i);
        }
    }

    @Test
    void testSmallHash() {
        int hashSize = 100;
        Map<String, String> map = new HashMap<>(hashSize);
        for (int i = 1; i <= 100000; i++) {
            int k = (i - 1) / hashSize;
            int v = i % hashSize;
            map.put("key_" + v, "value_" + v);
            if (v == 0) {
                jedis.hmset("test:small:hash_" + k, map);
            }
        }
    }

    @AfterEach
    void tearDown() {
        if (jedis != null) {
            jedis.close();
        }
    }
}

在这里插入图片描述

2.批处理优化

2.1.Pipeline

Redis执行命令是微秒级的,而网络传输是毫秒级的。
在这里插入图片描述
演示(网络传输的耗时):
在这里插入图片描述
在这里插入图片描述
测试:

@Test
void testFor() {
    for (int i = 1; i <= 100000; i++) {
        jedis.set("test:key_" + i, "value_" + i);
    }
}

在这里插入图片描述
N条命令批量执行:一次传输的太多可能会将带宽占满,导致网络堵塞
在这里插入图片描述
演示:
在这里插入图片描述
测试:

@Test
void testMxx() {
    String[] arr = new String[2000];
    int j;
    long b = System.currentTimeMillis();
    for (int i = 1; i <= 100000; i++) {
        j = (i % 1000) << 1;
        arr[j] = "test:key_" + i;
        arr[j + 1] = "value_" + i;
        if (j == 0) {
            jedis.mset(arr);
        }
    }
    long e = System.currentTimeMillis();
    System.out.println("time: " + (e - b));
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
测试:

@Test
void testPipeline() {
    // 创建管道
    Pipeline pipeline = jedis.pipelined();
    long b = System.currentTimeMillis();
    for (int i = 1; i <= 100000; i++) {
        // 放入命令到管道
        pipeline.set("test:key_" + i, "value_" + i);
        if (i % 1000 == 0) {
            // 每放入1000条命令,批量执行
            pipeline.sync();
        }
    }
    long e = System.currentTimeMillis();
    System.out.println("time: " + (e - b));
}

在这里插入图片描述
在这里插入图片描述

2.2.集群下的批处理

  • 推荐使用并行slot
    在这里插入图片描述
    批处理失败演示:
    在这里插入图片描述
    hash_tag批处理演示:
    在这里插入图片描述
    手写串行slot代码测试:

    package com.heima.test;
    
    import com.heima.jedis.util.ClusterSlotHashUtil;
    import org.junit.jupiter.api.AfterEach;
    import org.junit.jupiter.api.BeforeEach;
    import org.junit.jupiter.api.Test;
    import redis.clients.jedis.HostAndPort;
    import redis.clients.jedis.JedisCluster;
    import redis.clients.jedis.JedisPoolConfig;
    
    import java.util.HashMap;
    import java.util.HashSet;
    import java.util.List;
    import java.util.Map;
    import java.util.stream.Collectors;
    
    public class JedisClusterTest {
    
        private JedisCluster jedisCluster;
    
        @BeforeEach
        void setUp() {
            // 配置连接池
            JedisPoolConfig poolConfig = new JedisPoolConfig();
            poolConfig.setMaxTotal(8);
            poolConfig.setMaxIdle(8);
            poolConfig.setMinIdle(0);
            poolConfig.setMaxWaitMillis(1000);
            HashSet<HostAndPort> nodes = new HashSet<>();
            nodes.add(new HostAndPort("192.168.150.101", 7001));
            nodes.add(new HostAndPort("192.168.150.101", 7002));
            nodes.add(new HostAndPort("192.168.150.101", 7003));
            nodes.add(new HostAndPort("192.168.150.101", 8001));
            nodes.add(new HostAndPort("192.168.150.101", 8002));
            nodes.add(new HostAndPort("192.168.150.101", 8003));
            jedisCluster = new JedisCluster(nodes, poolConfig);
        }
    
        @Test
        void testMSet() {
            jedisCluster.mset("name", "Jack", "age", "21", "sex", "male");
    
        }
    
    	// 串行slot方案
        @Test
        void testMSet2() {
            Map<String, String> map = new HashMap<>(3);
            map.put("name", "Jack");
            map.put("age", "21");
            map.put("sex", "Male");
    
            Map<Integer, List<Map.Entry<String, String>>> result = map.entrySet()
                    .stream()
                    .collect(Collectors.groupingBy(
                            entry -> ClusterSlotHashUtil.calculateSlot(entry.getKey()))
                    );
            for (List<Map.Entry<String, String>> list : result.values()) {
                String[] arr = new String[list.size() * 2];
                int j = 0;
                for (int i = 0; i < list.size(); i++) {
                    j = i<<2;
                    Map.Entry<String, String> e = list.get(0);
                    arr[j] = e.getKey();
                    arr[j + 1] = e.getValue();
                }
                jedisCluster.mset(arr);
            }
        }
    
        @AfterEach
        void tearDown() {
            if (jedisCluster != null) {
                jedisCluster.close();
            }
        }
    }
    

Spring提供的代码测试(封装好的并行slot处理):

package com.heima;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.heima.redis.pojo.User;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.redis.core.RedisCallback;
import org.springframework.data.redis.core.StringRedisTemplate;

import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

@SpringBootTest
class RedisStringTests {

    @Autowired
    private StringRedisTemplate stringRedisTemplate;

    @Test
    void testString() {
        // 写入一条String数据
        stringRedisTemplate.opsForValue().set("verify:phone:13600527634", "124143");
        // 获取string数据
        Object name = stringRedisTemplate.opsForValue().get("name");
        System.out.println("name = " + name);
    }

    private static final ObjectMapper mapper = new ObjectMapper();

    @Test
    void testSaveUser() throws JsonProcessingException {
        // 创建对象
        User user = new User("虎哥", 21);
        // 手动序列化
        String json = mapper.writeValueAsString(user);
        // 写入数据
        stringRedisTemplate.opsForValue().set("user:200", json);

        // 获取数据
        String jsonUser = stringRedisTemplate.opsForValue().get("user:200");
        // 手动反序列化
        User user1 = mapper.readValue(jsonUser, User.class);
        System.out.println("user1 = " + user1);
    }

    @Test
    void testHash() {
        stringRedisTemplate.opsForHash().put("user:400", "name", "虎哥");
        stringRedisTemplate.opsForHash().put("user:400", "age", "21");

        Map<Object, Object> entries = stringRedisTemplate.opsForHash().entries("user:400");
        System.out.println("entries = " + entries);
    }


    @Test
    void testNormal() {
        long begin = System.currentTimeMillis();
        for (int i = 1; i <= 100000; i++) {
            stringRedisTemplate.opsForValue().set("key_" + i, "value_" + i);
        }
        long end = System.currentTimeMillis();
        System.out.println("耗时 = " + (end - begin));
    }

    @Test
    void testMset() {
        long begin = System.currentTimeMillis();
        Map<String, String> map = new HashMap<>(1000);
        for (int i = 1; i <= 100000; i++) {
            map.put("key_" + i, "value_" + i);
            if (map.size() >= 1000) {
                stringRedisTemplate.opsForValue().multiSet(map);
                map.clear();
            }
        }
        long end = System.currentTimeMillis();
        System.out.println("mset耗时 = " + (end - begin));
    }

    @Test
    void testPipeline() {
        long begin = System.currentTimeMillis();
        for (int i = 0; i <= 100; i++) {
            int c = i * 1000;
            stringRedisTemplate.executePipelined((RedisCallback<Object>) connection -> {
                for (int j = 1; j <= 1000; j++) {
                    int d = c + j;
                    connection.set(
                            ("key_" + d).getBytes(StandardCharsets.UTF_8),
                            ("value_" + d).getBytes(StandardCharsets.UTF_8)
                    );
                }
                return null;
            });
        }
        long end = System.currentTimeMillis();
        System.out.println("Pipeline耗时 = " + (end - begin));
    }

    @Test
    void testBigHash() {
        Map<String, String> map = new HashMap<>(1000);
        for (int i = 1; i <= 1000000; i++) {
            map.put("key_" + i, "value_" + i);
            if (map.size() >= 1000) {
                stringRedisTemplate.opsForHash().putAll("hk", map);
                map.clear();
            }
        }
    }

    @Test
    void testSmallHash() {
        Map<String, String> map = new HashMap<>(1000);
        for (int i = 0; i < 1000000; i++) {
            map.put("key_" + (i % 500), "value_" + i);
            if (map.size() >= 500) {
                stringRedisTemplate.opsForHash().putAll("k" + (i / 500), map);
                map.clear();
            }
        }
    }
	// 集群下的批处理方案
    @Test
    void testMSetInCluster() {
        Map<String, String> map = new HashMap<>(3);
        map.put("name", "Rose");
        map.put("age", "21");
        map.put("sex", "Female");
        stringRedisTemplate.opsForValue().multiSet(map);


        List<String> strings = stringRedisTemplate.opsForValue().multiGet(Arrays.asList("name", "age", "sex"));
        strings.forEach(System.out::println);

    }
}

3.服务端优化

3.1.持久化配置

在这里插入图片描述
控制rewrite的阈值:
在这里插入图片描述
配置no-appendfsync-on-rewrite = yes,禁止在rewrite期间做aof,避免因AOF引起的阻塞,原因如下:
在这里插入图片描述

3.2.慢查询

在这里插入图片描述

在这里插入图片描述

3.3.命令及安全配置

在这里插入图片描述
漏洞重现方式
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.4.内存配置

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.集群最佳实践

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、Redis原理分析

1.数据结构

1.1.动态字符串SDS

在这里插入图片描述
在这里插入图片描述
二进制安全,指的是读取字符串的时候,以len的大小来读,不是以’\0’为结束标识符
在这里插入图片描述

1.2.IntSet

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.3.Dict

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.4.ZipList

压缩列表的是为了解决指针占用内存过多的问题。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.5.QuickList

在ZipList中申请的内存是一大块连续的空间,不好申请,存在内存碎片化。在增删的时候,重新申请,涉及到内核态的切换,存在耗时长。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.6.SkipList

不从首尾查询,而是从中间开始查询,怎么解决?中间查询的性能太低。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.7.RedisObject

将6种底层的数据结构封装成RedisObject占用16字节(对象头)。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.8五种数据结构

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.网络模型

2.1.用户空间和内核空间

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2.阻塞IO

在这里插入图片描述
在这里插入图片描述

2.3.非阻塞IO

在这里插入图片描述

2.4.IO多路复用

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
先断开list_head中的链表,如果是ET模式,则会清空该链表,存在没读完的情况,获不到剩余的数据(需要手动添加到链表)。
在这里插入图片描述
在这里插入图片描述

2.5.信号驱动IO

在这里插入图片描述

2.6.异步IO

在这里插入图片描述
在这里插入图片描述

2.7.Redis网络模型

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.通信协议

3.1.RESP协议

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2.模拟Redis客户端

TODO

4.内存策略

在这里插入图片描述

4.1.过期策略

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.2.淘汰策略

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值