(python 3)1007 素数对猜想 (20分)

本文介绍了一种计算不超过给定正整数N的满足素数对猜想的素数对个数的方法。通过定义d​n​​=p​n+1​​−p​n​​,其中p​i​​是第i个素数,实现了一个高效判断素数的函数,并统计了满足条件的素数对数量。
摘要由CSDN通过智能技术生成

1007 素数对猜想 (20分)

让我们定义d​n​​为:d​n​​=p​n+1​​−p​n​​,其中p​i​​是第i个素数。显然有d​1​​=1,且对于n>1有d​n​​是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。

现给定任意正整数N(<10​5​​),请计算不超过N的满足猜想的素数对的个数。

输入格式:

输入在一行给出正整数N

输出格式:

在一行中输出不超过N的满足猜想的素数对的个数。

输入样例:

20

输出样例:

4

 

素数(Prime number),又称作质数,是在大于1的自然数中,除了1和它本身以外,不再有其他因数的自然数。 

 

代码:

#导入math库
#math库中包含了许多数学运算函数
import math
#输入数字并转换为整型
n=int(input())
#用来保存素数的列表
primelist=[]

#用来统计满足猜想的素数对个数
count=0

#函数用来判断是否为素数
def isprime(n):
    #n为2或3,可以直接判断是素数
    if n == 2 or n == 3:
        return True
    #n可以被2或3整除,可以直接判断不是素数
    if n % 2 == 0 or n % 3 == 0:
        return False

    #观察素数的分布可以发现,除2&3以外的素数,必定分布在6k(k为大于1的整数)的两侧。
    #6k%6==0
    #(6k+2)%2==0
    #(6k+3)%3==0
    #(6k+4)%2==0
    #所以2&3以外的素数为6k+1或6k-1的形式,据此可以缩小因子范围
    for k in range(6, int(math.sqrt(n)) + 2, 6):
        if n % (k - 1) == 0 or n % (k + 1) == 0:
            return False
    return True

for i in range(2,n+1):

    #是素数则添加到素数列表中
    if isprime(i):
        primelist.append(i)

#扫描素数列表,判断满足猜想的素数对
for k in range(1,len(primelist)):
    if primelist[k]-primelist[k-1]==2:
        count=count+1

#输出满足猜想的素数对的数量
print(count)

 

注意:

在isprime函数中,如果采用如下代码,即使用暴力法判断素数,会产生超时问题,随着数字位数的增大,程序所用的时间明显增多。

超时代码:

n=int(input())
primelist=[]

flag=0
count=0

for i in range(2,n+1):
    flag=1
    for j in range(2,i):
        if i%j==0:
            flag=0
            break

    if flag==1:
        primelist.append(i)

for k in range(1,len(primelist)):
    if primelist[k]-primelist[k-1]==2:
        count=count+1

print(count)

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Think@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值