为什么HTTP请求后面有时带一个sign参数(HTTP请求签名校验) 最近在开发过程中,发现前端有很多的接口发送请求时都会携带sign=xxxx参数,但是后端明明没有写,也不需要这个参数,后面才知道,这个前面是为了给http请求签名,主要是为了防止请求体和请求参数被拦截篡改,后端不需要处理该参数,该参数是给网关来进行处理和校验的。
前端学习笔记 简洁教程:https://www.runoob.com/w3cnote/webpack-tutorial.html。3、JSX是使用React的一种语言,能够html和js混写,完全兼容js,文件名字后缀为.jsx。2、webpack是做什么的,一个项目打包工具,可以把ES6语法转化为浏览器能识别的ES5语法。JSX:js和html相结合的一种新的“语言”,浏览器无法识别,需要经过编译成js代码才能运行。5、typescript是js的超集,完全兼容js,有更多的语法和特性。
Docker服务启动报错:Job for docker.service failed because the control process exited with error Docker服务启动报错:Job for docker.service failed because the control process exited with errorhrz@k8smaster:~$ sudo systemctl restart dockerJob for docker.service failed because the control process exited with error code.See "systemctl status docker.service"
AWS爬取价格 上个月导师要我做的一个小爬虫,分享一下过程需求分析目标url:AWS Fargate 价格-无服务器容器服务-AWS云服务 (amazon.com)需要爬取网页中Fragate Spot的价格,但是不同区域价格不一样,并且价格每隔几个小时会有变化,所以需要定时爬取。把爬取的数据存入excel,方便后期分析价格变化情况。网页分析通过分析网页结构,我在html中可以发现,不同地区的pricce并不直接在html中显示,只有点击后才会在html中检查是否是异步请求,发现并没有异步请求,也就是
Pytorch深度学习实践(6)多为特征输入 b站链接:https://www.bilibili.com/video/BV1Y7411d7Ys?p=78个feature的输入,用矩阵的运算来表示(因为矩阵运算可以用gpu或者cpu加速)输入的维度是8维,输出的维度是1维也就是说X矩阵的行数代表样本数,列数代表特征数矩阵就是一个N为空间到M维空间的一个线性变换目标是从8维到1维,但是为什么要8->6->2->1,这样一步一步的转换呢每一次线性变换都加上一个激活函数(例如sigmoid函数)进行一个非线性变换,然后再传.
Pytorch深度学习实践(5)Logistic Regression b站链接:https://www.bilibili.com/video/BV1Y7411d7Ys?p=6Logistic Regression(逻辑斯蒂回归) 是一个用于分类的模型,并不是回归模型对于预测值y,在分类问题中此时就是一个集合,例如y∈{0,1,2,3,…},我们所要做的就是,得到y对应每个元素的概率,取概率最大的那个元素就是y的预测值,也就分类完成了。用pytorch深度学习还是以下四个步骤:准备数据集(用dataloader和dataset)设计模型(设计 计算图)构建损失.
2021深圳大学计算机拟录取 首先非常的开心,其次我复试排名第二,居然有215/220的高分,实在把我惊到了,最后排名从58升到了23。复试过程初试成绩出后,就开始有所准备复试了,出成绩和复试中间大概就隔了有一个月。我寒假其实在家就把PAT乙级的题目刷完了,基本没有不会写的,当知道是线上后,其实感觉问题也不大,就当温习了一下基础的算法。来学校后,玩了几天,大概3月10好左右开始正式进入学习状态。每天看408+数据库+软件工程等专业课,以及听一周听力,准备英语口语方面的东西。复试分为三部分,英语问答+算法题+综合面试(没有自.
PyTorch 深度学习实践 (4)构建线性回归模型 b站视频链接https://www.bilibili.com/video/BV1Y7411d7Ys?p=5利用pytorch进行深度学习分为以下4个步骤准备数据集(用dataloader和dataset)设计模型(设计 计算图)构建损失函数和优化器(也就是loss函数和optimizer)开始循环训练(前馈算损失,反馈算梯度,更新权重)广播机制关于Linear类的介绍非常好理解有关python魔法函数的介绍https://blog.csdn.net/u012609509/a.