我的leetcode学习之旅第二周——双指针Two pointers

学习大纲

背向双指针:longest palindromic substring 中心线枚举算法, find k cloest elements

相向双指针:1、reverse 2、two sum 3、partition:quick select, 分两部分,分三部分

同向双指针:滑动窗口、快慢指针

相向双指针

1、reverse
三部翻转法

valid palindrome:给定一个字符串,判断其是否为一个回文串。只考虑字母和数字,忽略大小写。

class Solution {
public:
    /**
     * @param s: A string
     * @return: Whether the string is a valid palindrome
     */
    bool isPalindrome(string &s) {
        for (int i = 0, j = s.size() - 1; i < j; i++, j--) {
            while (!isdigit(s[i]) && !isalpha(s[i]) && i < j)
                i++;
            while (!isdigit(s[j]) && !isalpha(s[j]) && i < j)
                j--;
            if (i < j && tolower(s[i]) != tolower(s[j]))
                return false;
        }
        return true;
    }
};

给一个非空字符串 s,你最多可以删除一个字符。判断是否可以把它变成回文串。
可以在遇到不相同时左或右指针移动一格

class Solution
{
  public:
    bool validPalindrome(string s)
    {
        int left = 0, right = s.size() - 1;
        while (left < right)
        {
            if (s[left] != s[right])
                return isValid(s, left, right - 1) || isValid(s, left + 1, right);
            ++left;
            --right;
        }
        return true;
    }
    bool isValid(string s, int left, int right)
    {
        while (left < right)
        {
            if (s[left] != s[right])
                return false;
            ++left;
            --right;
        }
        return true;
    }
};

2、two sum 类
只能用hashmap

设计b并实现一个 TwoSum 类。他需要支持以下操作:add 和 find。
add -把这个数添加到内部的数据结构。
find -是否存在任意一对数字之和等于这个值

class TwoSum {
public:
    /**
     * @param number: An integer
     * @return: nothing
     */
    void add(int number) {
        ++m[number];
    }
    bool find(int value) {
        for (auto a : m) {
            int t = value - a.first;
            // 如果找的value-当前值的差能在map中找到,返回true。
            if ((t != a.first && m.count(t)) || (t == a.first && a.second > 1)) {
                return true;
            }
        }
        return false;
    }
private:
    unordered_map<int, int> m;
};

给定一个已经 按升序排列 的数组,找到两个数使他们加起来的和等于特定数。
函数应该返回这两个数的下标,index1必须小于index2。注意返回的值不是 0-based。
使用双指针

class Solution {
public:
    /**
     * @param nums: an array of Integer
     * @param target: target = nums[index1] + nums[index2]
     * @return: [index1 + 1, index2 + 1] (index1 < index2)
     */
    vector<int> twoSum(vector<int> &nums, int target) {
        int i=0; int j=nums.size()-1;
        vector<int> output;
        if(!j) return output;

        while(i<j){
            if(nums[i]+nums[j]<target) {
                i++;
            }
            else if(nums[i]+nums[j]>target){
                j--;
            }
            else{
                output.push_back(i+1);
                output.push_back(j+1);
                return output;
            }
        }
        return output;
    }
};

给一整数数组, 找到数组中有多少组 不同的元素对 有相同的和, 且和为给出的 target 值, 返回对数.

class Solution {
public:
    /**
     * @param nums an array of integer
     * @param target an integer
     * @return an integer
     */
    int twoSum6(vector<int> &nums, int target) {
        // Write your code here
        int n = nums.size(), cnt = 0;
        sort(nums.begin(), nums.end());
        int l = 0, r = nums.size() -1;
        while (l < r) {
            if (nums[l] + nums[r] == target) {
                cnt ++;
                l ++, r --;
                while (l < r && nums[r] == nums[r + 1])
                    r --;
                while (l < r && nums[l] == nums[l - 1])
                    l ++;
            } else if (nums[l] + nums[r] > target) {
                r --;
            } else {
                l ++;
            }
        }
        return cnt;
    }
};

给出一个有n个整数的数组S,在S中找到三个整数a, b, c,找到所有使得a + b + c = 0的三元组。
其实也是two sum 问题,循环讨论a就行

class Solution {
public:    
    /**
     * @param numbers : Give an array numbers of n integer
     * @return : Find all unique triplets in the array which gives the sum of zero.
     */
    vector<vector<int> > threeSum(vector<int> &nums) {
        vector<vector<int> > result;
        
        sort(nums.begin(), nums.end());
        for (int i = 0; i < nums.size(); i++) {
            // 可以先去重
            if (i > 0 && nums[i] == nums[i - 1]) {
                continue;
            }
            // two sum;
            int start = i + 1, end = nums.size() - 1;
            int target = -nums[i];
            while (start < end) {
                if (start > i + 1 && nums[start - 1] == nums[start]) {
                    start++;
                    continue;
                }
                if (nums[start] + nums[end] < target) {
                    start++;
                } else if (nums[start] + nums[end] > target) {
                    end--;
                } else {
                    vector<int> triple;
                    triple.push_back(nums[i]);
                    triple.push_back(nums[start]);
                    triple.push_back(nums[end]);
                    result.push_back(triple);
                    start++;
                }
            }
        }
        
        return result;
    }
};

给定一个整数数组,在该数组中,寻找三个数,分别代表三角形三条边的长度,问,可以寻找到多少组这样的三个数来组成三角形?
思路:先排序,再对i做循环,讨论j和k,k从i+2开始增加,当i+j<=k&&k<len时,个数增加k-j-1个。此时只需要j+1,k从当前位置继续去增加!

class Solution {
public:
    /**
     * @param S: A list of integers
     * @return: An integer
     */
    int triangleCount(vector<int> &S) {
        if (S.size() < 3) return 0;
        sort(S.begin(), S.end());
        int result=0;
        for (int i = 0; i < S.size()-2; i++) {
            int k = i+2;
            for(int j=i+1;j<S.size()-1;j++){
                while(k<S.size()&&S[i] + S[j] > S[k]){
                       k++; 
                }
                result+=k-j-1;
            }
        }
        return result;
    }
};

partition array划分阵列,可以用快速排序

class Solution {
public:
    int partitionArray(vector<int> &nums, int k) {
        int i = 0, j = nums.size() - 1;
        while (i <= j) {
            while (i <= j && nums[i] < k) i++;
            while (i <= j && nums[j] >= k) j--;
            if (i <= j) {
                int temp = nums[i];
                nums[i] = nums[j];
                nums[j] = temp;
                i++;
                j--;
            }
        }
        return i;
    }
};

quick select
大致上与快速排序相同

#include <stdio.h>
#include <vector>
#include <algorithm>
using namespace std;

class Solution
{
public:
    int findKthLargest(vector<int> &nums, int k)
    {
        int result = 0;
        int numsSize = int(nums.size());
        if (numsSize == 0 || k > numsSize)
        {
            return 0;
        }
        //寻找第kMIN小的数
        int kMin = numsSize - k + 1;
        result = select(nums, 0, numsSize - 1, kMin);
        return result;
    }

    int select(vector<int> &nums, int left, int right, int target)
    {
        if (left == right)
        {
            return nums[left];
        }
        int cut = partition(nums, left, right);
        //当前第currentResult小的元素
        int currentResult = cut - left + 1;
        if (target == currentResult)
        {
            return nums[cut];
        }
        else if (target < currentResult)
        {
            return select(nums, left, cut - 1, target);
        }
        else
        {
            //寻找接下来第target - currentResult小的数
            return select(nums, cut + 1, right, target - currentResult);
        }
        return 0;
    }

    int partition(vector<int> &nums, int left, int right)
    {
        int cut = nums[right];
        //i指向大堆的最左边的数,j指向下一个判断的数
        int i = left;
        for (int j = left; j < right; j++)
        {
            if (nums[j] <= cut)
            {
                exchange(nums[i], nums[j]);
                i++;
            }
        }
        exchange(nums[i], nums[right]);
        return i;
    }

    void exchange(int &a, int &b)
    {
        int tmpInt = a;
        a = b;
        b = tmpInt;
        return;
    }
};

作者:pinku-2
链接:https://leetcode-cn.com/problems/kth-largest-element-in-an-array/solution/shu-zu-zhong-de-di-kge-zui-da-yuan-su-cshi-xian-sa/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值