感知机和激励函数总结

        最近一直在看算法和deep learning的书,刚开始一直没有搞明白什么是神经元、感知机和激活函数?一团乱麻,直到看见一本书上的解释,恍然大悟,和大家分享。

一、神经元和感知机

        感知机是由美国学者Frank Rosenblatt在1957年提出来,也是作为神经网络(深度学习)的起源的算法;感知机接收多个输入信号,输出一个信号。

        感知机的信号只有“流/不流”(1/0)两种取值。

        

         一般来说,感知机是指“朴素感知机”或者“人工神经元”,是单层网络,指的是激活函数使用了阶 跃函数A 的模型。“多层感知机”是指神经网络,即使用 sigmoid 函数(后述)等平滑的激活函数的多层网络。图中的O称为“神经元”或者“节点”;

二、激励函数

        激励函数主要是指阶跃函数和sigmoid函数;

        ①阶跃函数

        

         阶跃函数的图形表示如下:

         ②sigmoid函数

         sigmoid函数的图形表示如下:

         ③阶跃函数和sigmoid函数的比较

        sigmoid函数是一条平 滑的曲线,输出随着输入发生连续性的变化。而阶跃函数以0为界,输出发 生急剧性的变化。sigmoid函数的平滑性对神经网络的学习具有重要意义;阶跃函数只能返回0或1,sigmoid函数可以返 回0.731 ...、0.880 ...等实数(这一点和刚才的平滑性有关)。也就是说,感 知机中神经元之间流动的是0或1的二元信号,而神经网络中流动的是连续 的实数值信号。如果把这两个函数与水联系起来,则阶跃函数可以比作“竹筒敲石”sigmoid函数可以比作“水车”。阶跃函数就像竹筒敲石一样,只做是否传送 水(0或1)两个动作,而sigmoid函数就像水车一样,根据流过来的水量相应 地调整传送出去的水量。

        

        

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_40743412

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值