我不是知识的生产者,我只是一个渺小的搬运工,我们都站在巨人的肩膀上
探索了一下午这玩意的用法,终于会用了,在此附上实例子
首先要明白他保存图的原理,这个里面讲的很详细,请细品
https://zhuanlan.zhihu.com/p/31308381
tf.train.write_graph这个函数可以保留节点,op,constant,但不保存variable,如果你想要保存variable,那么就要转为constant
import tensorflow as tf
import numpy as np
from tensorflow.python.platform import gfile
#生成图
input1= tf.placeholder(tf.int32,name="input")
b = tf.constant([3])
output1= tf.add(input1, b, name="output")
#保存图
with tf.Session() as sess:
tf.train.write_graph(sess.graph_def, "./", "test.pb", False)
print(sess.run(output1,feed_dict={input1:1}))
#读取图
with tf.Session() as sess:
with gfile.FastGFile("./test.pb",'rb') as f:
graph = tf.get_default_graph()
graph_def &

本文介绍了如何使用tf.train.write_graph保存TensorFlow模型的图结构,并强调该方法不保存变量,需要通过convert_variables_to_constants转换为常量。同时,文章提到了tensorboard在模型结构可视化中的作用,以及如何运行tensorboard进行可视化。对于如何获取图中张量以及保存包含变量的图,文章给出了相应解答。
最低0.47元/天 解锁文章
263

被折叠的 条评论
为什么被折叠?



