那什
码龄7年
关注
提问 私信
  • 博客:112,873
    112,873
    总访问量
  • 18
    原创
  • 1,464,777
    排名
  • 67
    粉丝
  • 0
    铁粉

个人简介:热情开朗活泼的程序姑娘~

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2017-10-25
博客简介:

那什

博客描述:
爱学习,爱音乐,爱生活~
查看详细资料
个人成就
  • 获得176次点赞
  • 内容获得47次评论
  • 获得624次收藏
创作历程
  • 4篇
    2020年
  • 6篇
    2019年
  • 8篇
    2018年
成就勋章
TA的专栏
  • tensorflow
    2篇
  • 算法
    3篇
  • 大数据
  • 自然语言处理
    3篇
  • 数据结构
  • 推荐算法
    3篇
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

推荐系统之DCN模型

Deep&CrossNetwork 是继wide&deep模型推出的,对比主要是将wide层改成cross层,用于特征的充分自动交叉编码,而后和deep层特征拼接作为最后一层输入,其基本参数feature_size(类别特征数): M field_size(类别特征列): F dense size(连续特征个数): D embedding size(每个类别特征表示维度...
原创
发布博客 2020.03.21 ·
2389 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

tensorflow稠密矩阵转稀疏

def to_sparse_input_and_drop_ignore_values(input_tensor, ignore_value=None): """Converts a `Tensor` to a `SparseTensor`, dropping ignore_value cells. If `input_tensor` is already a `SparseTe...
原创
发布博客 2020.03.20 ·
1548 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

推荐系统之deepfm模型

一般国内涉及到推荐模型的公司,发展历程为传统机器学习LR-->FM到深度学习wide&deep、deepfm、DCN...这些。目前我所在的公司采用的是online fm模型,准备向深度学习进军,所以最近也是在调研一些工业界用的比较多的模型,以此记录一下学习历程,因为自己本身对tensorflow不是很熟悉,一些看似简单的模型架构实现起来很困难(说到底就是线性代数学的差,矩阵...
原创
发布博客 2020.03.19 ·
900 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

tf.train.write_graph用法

我不是知识的生产者,我只是一个渺小的搬运工,我们都站在巨人的肩膀上探索了一下午这玩意的用法,终于会用了,在此附上实例子首先要明白他保存图的原理,这个里面讲的很详细,请细品https://zhuanlan.zhihu.com/p/31308381tf.train.write_graph这个函数可以保留节点,op,constant,但不保存variable,如果你想要保存variabl...
原创
发布博客 2020.02.28 ·
4634 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

19年春招实习心得

19届实习面试一、CVTE(自然语言处理) 40min1.希尔伯特空间是什么,线性空间是什么2.sigmoid函数形式,其导数形式是啥3.dropout原理,和DAE区别4.svm核函数的用处5.autoencoder为什么要加噪音,怎么加的噪音6.常用的中文分词算法7.word2vec中有那些方法是用来提高计算效率的8.项目中你觉得做的最好的地方9.bag...
原创
发布博客 2019.06.08 ·
651 阅读 ·
2 点赞 ·
4 评论 ·
5 收藏

推荐系统之wide&deep

wide & deep相信这是个对有关推荐系统工作者非常眼熟的一个模型,是16年谷歌应用于google play中的模型,在推荐系统中工业界的应用也非常广泛,是一个比较成熟的模型,近日实习所在组上线这个模型,点击率相比于LR得到了极大的提高,借此机会学习总结一下这个模型。个人觉得推荐非常重要的就是构建用户画像,还原用户行为,基于此分析用户兴趣爱好,然后对其推荐,用户行为特征显得...
原创
发布博客 2019.06.02 ·
861 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

中文分词算法

写在最前面:由于我们chinese language的特殊性,不和英文中有天然空格符一样,我们需要将汉字序列切分成单独的词。分词算法是文本挖掘的基础,通常对整个模型的效果起着较大的决定作用。中文分词算法主要分为基于词表的分词算法、基于统计模型的分词算法、基于序列标注的分析算法。下面我们来一一剖析吧准备好了吗!迎接疾风吧,数学能让人清醒!!!目录1.基于词表的分词算法 ...
原创
发布博客 2019.03.02 ·
7133 阅读 ·
3 点赞 ·
0 评论 ·
23 收藏

词向量-Glove理解推导

Glove模型模型目标:进行词的向量化表示,使得向量之间尽可能的蕴含语义和语法的信息Glove用词向量表达共现词频的对数代价函数:模型推导 (不是很严谨)首先给予一些定义共现词频Xi,j 表示若中心词为i,语境词j出现的次数,通俗一点就是说单词i和单词j在给定滑动窗口数时同时出现的次数Xi表示单词出现的总次数表示单词k出现在单词i语境中的概率表示在中心词为i...
原创
发布博客 2019.03.01 ·
849 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Word2vec理解推导

一旦提到自然语言处理,想必大家都会接触到经典模型Word2vec,他是根据词语的上下文位置用来将单词矢量化的一个模型,已经被证明所转换的单词具有语义话意义,平时我们在处理文本数据时,经常会遇到数据稀疏导致训练困难的问题,举个例子,有三个单词,dog,cat,bird,如果按找平常one-hot的思维,那么会被转换成如下形式 dog cat bird ...
原创
发布博客 2019.02.28 ·
460 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数据分析+数据挖掘暑期实习碎碎念

 写在前面在闺蜜的博客乱写一篇关于最近春招的心得!先念念叨一点麻痹自我的鸡汤。鸡汤说:要有最朴素的生活与最遥远的梦想,即使明日天寒地冻,路遥马亡。鸡汤还说:慢慢走比较快;踏实一点,你想要的岁月都会给你。我爱鸡汤:)2018.2.25,还赖在家睡懒觉的我,被同学发来的春季实习招聘链接给吵醒,那时候天真的以为时间还早,以为招聘时间持续那么久,再看看书,补补基础,趁着结束前达...
原创
发布博客 2019.01.18 ·
1759 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

分布式处理之Mapreduce框架

   先举个小小的例子,简单说明一下Mapreduce这个架构。   小明网购买了一大箱苹果,她现在要把这箱苹果带回家,可是搬不动,于是她召集了一群自己的小伙伴,将箱子给拆开,给每个小伙伴分了一袋,然后一起带回家,再将这些苹果放到这个箱子,这样的话这一箱苹果就扛回来了。Mapreduce便是利用这个分工合作的思想去处理海量数据。  当然,这只是个非常浅显的例子,实际上Mapreduce内部还是十分...
原创
发布博客 2018.06.05 ·
582 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

动态规划算法(DP)

    校招笔试面试前,大家一般都会先去牛客网上刷刷题,《剑指offer》,《leetcode》走起来,然后初次入手,发现很多不会,不会到什么程度呢,连个想法都没有,于是就去讨论区看答案,然后java大神,c++大神会给出花式解答,他们喜欢在答案前加一句,简单的dp算法,递归就可以解决,巴拉巴拉。说的还是很详细的,然而代码并不能看懂,毕竟    人生苦短,我用python下面就先给大家举一些详细的...
原创
发布博客 2018.06.05 ·
54103 阅读 ·
137 点赞 ·
20 评论 ·
503 收藏

数据结构中排序方法2(附python代码)

写在前面:在排序算法中我们经常评论到这个算法是否是稳定的,很多同学可能对于这个概念有点懵,所以我们先来解释一下何谓稳定性排序稳定性排序通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。在简单形式化一下,如果Ai = Aj,Ai原来在位置前,排序后Ai还是要在Aj位置前。目录1.希尔排序 1.1 基本原理 1.2希尔排序算法...
原创
发布博客 2018.04.24 ·
591 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

统计人的算法进阶学习之路

博者本人一路从统计走来,从最初的年幼无知到现在无比的后悔,多多少少也是有点心路旅程的人,再此记录下,并且推荐一些干货,以供学弟学妹们参考。 首先,说说统计学的就业趋势,笔者亲身体验,近年来难度以指数形势增加,因为随着机器学习以及人工智能的告诉发展,涌现一大批算法工程师跟我们抢饭碗,计算机学院的,算法搞不过,程序搞不过,唯一的突破口在于分析能力,这楼主也是亲身体验的,前任天池队友...
原创
发布博客 2018.04.20 ·
1699 阅读 ·
7 点赞 ·
4 评论 ·
10 收藏

数据结构中排序方法1(附python代码)

近来,笔试面试总是遇到各类的排序问题,作为一个纯统计出身的直女,对数据结构那是一窍不通,然后就被花式虐了,昨天被问到归并排序,明明之前有好好看过,然而被问起来,大脑仍旧是一片空白,为了鞭策自己,准备潜心归纳一波,归纳不好的,欢迎指正啦!另外,笔者十分辣鸡,不懂c语言,以后可能会懂吧,所以附上的代码都会是python的。冒泡排序 这个想必大家都有所耳闻吧,实在是太普遍了,冒泡...
原创
发布博客 2018.04.19 ·
251 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

360机器学习算法工程师面经

面试官是个很温柔的小哥哥,全程把话语权交给你,全程40min问:你能先自我介绍一下吗问:你能给我说说你的项目吗答:balabala问:恩,思路比较清晰,那你能给我说一下xgboost吗?答:xgboost的loss functionz加了L2正则以及限制叶子节点数,用到二阶求导,梯度下降更加准确,balabala。。。问:你随遍挑个分类算法原理仔细推
原创
发布博客 2018.04.19 ·
2673 阅读 ·
3 点赞 ·
5 评论 ·
7 收藏

梯度下降法,牛顿法等优化方法

梯度下降法梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。...
原创
发布博客 2018.04.11 ·
687 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

svm超详细推导

支持向量机是一种二分类模型,他的基本想法就是基于训练集和样本空间中找到一个最好的划分超平面,将两类样本分割开来,首先你就要知道什么样的划分发才能称为“最”好划分 看上图,二维平面上有两类样本,一类是用‘+’表示,另一类用‘-’表示,那么中间那几条划分线每条都能将两类样本分割开来,但我们我们一眼就注意到中间那条加粗的划分超平面,似乎他是最好的,因为两类的样本点都离他挺远的,专业点说就...
原创
发布博客 2018.04.10 ·
31049 阅读 ·
12 点赞 ·
10 评论 ·
92 收藏
加载更多