题面

题意
- 就是求斐波那契数列的值,
1
0
7
10^7
107个询问
题解
- 显然直接矩阵快速幂会
T
T
T,所以考虑找出循环节
(
499122176
)
(499122176)
(499122176),然后将这个循环节分块并且预处理系数矩阵的
[
0
,
块
大
小
−
1
]
[0,块大小-1]
[0,块大小−1]次方以及每块开始的那个位置的矩阵就行了
代码
#pragma GCC optimize(3)
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;
const int maxm=3;
const long long mod=998244353;
struct matrix{
long long mat[maxm][maxm];int siz;
matrix(int a=maxm){
siz=a-1;
memset(mat,0,sizeof(mat));
}
matrix operator*(const matrix &b){
matrix res;
for(int i=1;i<=siz;i++){
for(int k=1;k<=siz;k++){
if(mat[i][k]){
for(int j=1;j<=siz;j++){
if(b.mat[k][j]){
res.mat[i][j]=(res.mat[i][j]+(mat[i][k]*b.mat[k][j]));
if(res.mat[i][j]>=mod) res.mat[i][j]%=mod;
}
}
}
}
}
return res;
}
matrix pow(long long k){
matrix res,tmp=*this;
for(int i=1;i<=siz;i++) res.mat[i][i]=1;
while(k){
if(k&1) res=res*tmp;
tmp=tmp*tmp;
k>>=1;
}
return res;
}
void print(){
for(int i=1;i<=siz;i++){
for(int j=1;j<=siz;j++){
printf("%lld%c",mat[i][j],j==siz?'\n':' ');
}
}
}
}a,b,res,fac[maxn],cifang[maxn];
void init()
{
a.mat[1][1]=3;
a.mat[1][2]=2;
a.mat[2][1]=1;
a.mat[2][2]=0;
b.mat[1][1]=1;
b.mat[1][2]=0;
b.mat[2][1]=0;
b.mat[2][2]=0;
cifang[0].mat[1][1]=1;
cifang[0].mat[2][2]=1;
}
int q;
long long n,ans,sta[maxn];
int main()
{
init();
res=a.pow(99999)*b;
for(int i=100000,j=2;i<=5e8;i+=100000,j++){
fac[j]=res;
sta[j]=i;
res=a.pow(100000)*res;
}
for(int i=1;i<=100000;i++) {
cifang[i]=cifang[i-1]*a;
}
scanf("%d %lld",&q,&n);
long long answe=0;
for(int i=1;i<=q;i++) {
int need=n%499122176;
if(need<=1) {
ans=need;
}else{
int belong=(need/100000)+1;
int rest=need-1LL*(belong-1)*100000;
if(belong==1) {
res=cifang[need-1]*b;
ans=res.mat[1][1];
}else{
res=cifang[need-sta[belong]]*fac[belong];
ans=res.mat[1][1];
}
}
answe^=ans;
n=n^(ans*ans);
}
printf("%lld\n",answe);
}