【AI大模型】DockerCompose部署Deepseek+Ollama+AnythingLLM实现自己专属的本地大模型

一.Docker和DockerCompose安装

请查看另一篇文章,Docker和Docker-Compose安装和卸载教程


Ollama是什么?

Ollama 是一个开源工具,能够简化大型语言模型(LLMs)在本地计算机上的运行和管理。
它由开发者社区创建,支持用户无需依赖云端服务即可直接部署和交互式使用多种开源模型(如Deepseek、 Llama2、Mistral、CodeLlama 等)

Deepseek是什么?

DeepSeek是杭州深度求索公司发布的一系列在知识类任务上表现出色的人工智能开源大模型。
DeepSeek的主要功能包括自然语言查询处理、代码生成、API和Web服务等。其核心特点在于其卓越的多语言编程能力、强大的上下文支持、高效的推理速度和开源策略。

AnythingLLM是什么?

AnythingLLM是由Mintplex Labs开发的一款私人ChatGPT开源工具,它允许用户利用现有的大语言模型(LLM)技术,构建属于自己的私人ChatGPT。
这款应用程序能够将任何文档、资源或内容片段转化为上下文,供LLM在聊天时作为参考使用。


二.Ollama安装部署

  • ollama-docker-compose.yml文件如下
version: '3.8'

services:
  ollama:
    container_name: ollama
    image: ollama/ollama:0.5.8
    ports:
      - "11434:11434"
    tty: true
    restart: unless-stopped
# 执行命令,完成容器启动
docker-compose -f ollama-docker-compose.yml up -d --force-recreate
  • 在终端执行 docker ps | grep ollama,可以查看到容器已在运行
    在这里插入图片描述
  • 在网页查看 http://localhost:11434,可以看到Ollama已经运行中
    在这里插入图片描述

三.Deepseek本地大模型部署

# 进入ollama容器
docker exec -it ollama bash

# 运行deepseek大模型,建议个人电脑部署较小参数的模型,比如1.5b或者7b
# 需要等待ollama下载大模型,需要一点时间
ollama run deepseek-r1:1.5b
  • 以下是ollama官网推荐可部署的Deepseek-R1大模型版本
    在这里插入图片描述
  • 以下是启动完毕后,即可在终端进行对话交流;当前只在终端进行对话实在是太简陋了,后面安装AnythingLLM后就可以使用精美的Web页面进行对话了
    在这里插入图片描述

四.AnythingLLM安装部署

  • anythingllm-docker-compose.yml文件如下
version: '3.8'

services:
  anythingllm:
    container_name: anythingllm
    image: mintplexlabs/anythingllm:1.4.0
    ports:
      - "3001:3001"
    environment:
      - STORAGE_DIR=/app/server/storage
    restart: unless-stopped
# 执行命令,完成容器启动
docker-compose -f anythingllm-docker-compose.yml up -d --force-recreate
  • 登录AnythingLLM网页:http://localhost:3001
    在这里插入图片描述
  • 设置Ollama首选项,选择deepseek模型,并输入本地部署的Ollama地址(因为是容器部署,所以不能够是127.0.0.1或者localhost
    在这里插入图片描述
  • 回到AnythingLLM的聊天页,就可以使用自己部署的本地大模型进行聊天啦,是不是成就感拉满了~
    在这里插入图片描述
### 使用 DeepSeekOllama 和 AnythingLLM 构建本地知识库 #### 准备工作 为了成功构建包含 DeepSeekOllama 和 AnythingLLM 的本地知识库,需先确认环境配置满足最低硬件需求,并完成必要的软件安装。 - **操作系统支持**:Linux, macOS 或 Windows (建议使用 WSL2)[^1]。 - **依赖项准备**:Python 3.x 版本及其开发工具链;DockerDocker Compose 安装完毕并能正常运行[^2]。 #### 配置与部署 ##### 获取所需资源 通过命令行拉取最新版本的 Ollama 模型文件至本地存储: ```bash ollama pull bge-m3 ``` 此操作会下载指定的大规模预训练语言模型及相关组件,确保后续处理流程顺利进行。 ##### 初始化项目结构 创建一个新的目录用于存放整个项目的源码以及相关配置文件。在此基础上初始化 Git 仓库以便于版本控制管理。 ```bash mkdir my_local_knowledge_base && cd $_ git init . ``` ##### 设置 DeepSeek 环境变量 编辑 `.env` 文件加入如下内容以适应特定场景下的参数调整(如 API 密钥、端口映射等)。这一步骤对于保障系统的稳定性和安全性至关重要。 ```plaintext DEEPSEEK_API_KEY=your_api_key_here PORT=8080 DEBUG=True ``` ##### 整合 AnythingLLM 平台 利用 AnythingLLM 提供的功能接口快速对接各类外部数据源,包括但不限于静态 HTML 页面、PDF 文档集或是关系型数据库表单记录。具体实现方式可参照官方文档说明中的 Python SDK 应用实例。 ```python from anythingllm import DocumentLoader, KnowledgeBaseBuilder loader = DocumentLoader(source="path/to/your/documents") builder = KnowledgeBaseBuilder(loader) knowledge_base = builder.build() ``` #### 启动服务 一切就绪之后,在终端执行启动脚本来激活全部微服务单元,使之协同运作形成完整的解决方案栈。 ```bash docker-compose up -d --build ``` 此时访问 `http://localhost:8080` 即可见证由 DeepSeek 加持的人工智能驱动的知识检索界面雏形初现。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值