转载链接:https://blog.csdn.net/c20180630/article/details/57076374
什么是位运算?
程序中的所有数在计算机内存中都是以二进制的形式储存的。位运算说穿了,就是直接对整数在内存中的二进制位进行操作。
C++提供了6种位运算符来进行位运算操作:
& 按位与
| 按位或
^ 按位异或
~ 按位取反
<< 左移(左边消失,右边补0)
>> 右移(右边消失,左边补符号位)
位运算的操作数是整数类型或字符型.
按位与&运算
将参与运算的两操作数各自对应的二进制位进行与操作。例如:6的二进制是110,11的二进制是1011,那么6 & 11的结果就是2
110
& 1011
------------
0010 --> 2
& 运算常常用来将某变量的某些位清0,而保留其它位不变。例如,需要将int型变量n的低8位全置成0,而其余位不变,则用:
n = n & 0xFFFFFF00
& 也常用于二进制取位操作,例如一个数 & 1的结果就是取二进制的最末位。如果要判断n的第8位(从右往左,从1开始数)是否是1,则用:
if (n & 0x80 == 0x80) 语句
附注:int型是32个二进制位,16进制整数每个数字代表4个二进制位,故16进制int型常量最多是8位。
按位或|运算
|运算通常用于二进制特定位上的强制置1,例如一个数或 1的结果就是把二进制最末位强行变成1。
110
| 1011
------------
1111 --> 15
按位异或^运算
0^0=0 0^1=1 1^1=0
^运算通常用于对二进制的特定一位进行取反操作.例如n^0xff就使得n的最后8位取反。
110
^ 1011
-----------
1101 --> 13
^运算的特点是:如果a^b==c,则有a^c==b和c^b==a
^可用于简单加密,参见顾森BLOG。
左移<<运算
a << b就表示把a转为二进制后左移b位(在后面添b个0)。例如100的二进制为1100100,而110010000转成十进制是400,那么100 << 2 = 400。可以看出,a << b的值实际上就是a乘以2的b次方,因为在二进制数后添一个0就相当于该数乘以2(这样做要求保证高位的1不被移出)。
通常认为a << 1比a * 2更快,因为前者是更底层一些的操作。因此程序中乘以2的操作请尽量用左移一位来代替。
定义常量时可以用<<运算。你可以方便地用(1 << 16) - 1来表示65535。很多算法和数据结构要求数据规模必须是2的幂,此时可以用<<来定义MAXN等常量。
右移>>运算
a >> b表示二进制右移b位(去掉末b位)。
当a是正整数时,a>>b等价于a/(2的b次方)
当a是负整数时,a>>b并不等价与a/(2的b次方),而是等于a/(2的b次方)上取整。
如a=-9
cout<<a/2; //输出-4.
cout<<(a>>1); //输出-5.
我们也经常用>> 1来代替div 2,比如二分查找、堆的插入操作等等。
用>>代替除法运算可以使程序效率大大提高。最大公约数的二进制算法用除以2操作来代替慢得出奇的%运算,效率可以提高60%。
二进制求最大公约数原理。
若a<b gcd(a,b)=gcd(b,a)
若a、b都是偶数,则gcd(a,b)=2*gcd(a/2,b/2)
若a是奇数、b是偶数,则gcd(a,b)=gcd(a,b/2)
若a、b都是奇数,则gcd(a,b)=gcd((a-b)/2,b)
位运算的简单应用
整数类型的储存
计算机用0x0000到0x7FFF依次表示0到32767的数,剩下的0x8000到0xFFFF依次表示-32768到-1的数。32位有符号整数的储存方式也是类似的。稍加注意你会发现,二进制的第一位是用来表示正负号的,0表示正,1表示负。这里有一个问题:0本来既不是正数,也不是负数,但它占用了0x0000的位置,因此有符号的整数类型范围中正数个数比负数少一个。对一个有符号的数进行~运算后,最高位的变化将导致正负颠倒,并且数的绝对值会差1。也就是说,~ a实际上等于-a-1。这种整数储存方式叫做“补码”。
换言之,~a+1 = -a,那么a & -a得到什么?
得到a的右数第1位为1的数,这个操作可用来枚举a中为1的位,这在位操作中有较多应用。
---------------------
作者:C20180630_zjf
来源:CSDN
原文:https://blog.csdn.net/c20180630/article/details/57076374
版权声明:本文为博主原创文章,转载请附上博文链接!