求任意多边形的面积

转载 2018年04月17日 15:48:15
任意给出一个三角形ΔABC,设其顶点坐标分别为A(x1, y1),B(x2, y2),C(x3, y3),那么根据线性代数的知识,ΔABC的有向面积可表示为:


其中,ΔABC顶点A、B、C逆时针给出时有向面积为正,顺时针给出时有向面积为负。如图1所示,S∆ABC>0、S∆ABD<0.


图1

我们知道任意的多边形都可以分割成多个三角形,根据以上三角形面积公式就可以求出任意多边形的面积。


                                                        图2


如图2所示的六边形顶点坐标分别为O(x0, y0),A(x1, y1),B(x2, y2),C(x3, y3),D(x4, y4),E(x5, y5),则其面积可以表示为四个三角形面积之和:S=S∆OAB+S∆OBC+S∆OCD+S∆ODE

其中:

所以


在这里,前文给出的多边形示例是一个凸多边形,那么这一结论适用于凹多边形吗?下面我们看看如图3所示的凹多边形。

图3

按照上面的思路,这里的凹多边形面积表示为:S=S∆OAB+S∆OBC+S∆OCD,从前面介绍可以知道

S∆OAB=-S∆OBA<0,所以很明显上式是成立的,即此公式也适用于凹多边形。

经过以上分析,给出任意一个多边形,其顶点坐标依次为(x0,y0),(x1,y1),(x2,y2),...,(xn,yn)(其中n=2,3,4,…),则其面积可表示为:

(注意这里的n 是xn,yn的下标,而坐标是从0开始的,所以此多边形的边数为n+1)


换句话说,若已知多边形边上的每一点坐标,我们就可以求出该多边形的面积,包括如图4所示的曲线图形,当从O点到A点到O点的曲线上每一点坐标都已知时就能求出该曲线图的面积。

图4


例题:(HDU2036)

改革春风吹满地

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 41271    Accepted Submission(s): 21142


Problem Description
“ 改革春风吹满地,
不会AC没关系;
实在不行回老家,
还有一亩三分地。
谢谢!(乐队奏乐)”

话说部分学生心态极好,每天就知道游戏,这次考试如此简单的题目,也是云里雾里,而且,还竟然来这么几句打油诗。
好呀,老师的责任就是帮你解决问题,既然想种田,那就分你一块。
这块田位于浙江省温州市苍南县灵溪镇林家铺子村,多边形形状的一块地,原本是linle 的,现在就准备送给你了。不过,任何事情都没有那么简单,你必须首先告诉我这块地到底有多少面积,如果回答正确才能真正得到这块地。
发愁了吧?就是要让你知道,种地也是需要AC知识的!以后还是好好练吧...
 

Input
输入数据包含多个测试实例,每个测试实例占一行,每行的开始是一个整数n(3<=n<=100),它表示多边形的边数(当然也是顶点数),然后是按照逆时针顺序给出的n个顶点的坐标(x1, y1, x2, y2... xn, yn),为了简化问题,这里的所有坐标都用整数表示。
输入数据中所有的整数都在32位整数范围内,n=0表示数据的结束,不做处理。
 

Output
对于每个测试实例,请输出对应的多边形面积,结果精确到小数点后一位小数。
每个实例的输出占一行。
 

Sample Input
3 0 0 1 0 0 1 4 1 0 0 1 -1 0 0 -1 0
 

Sample Output
0.5 2.0

代码如下:

#include<cstdio>
#include<math.h>
#include<iomanip>
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
#define N 1000
int main() {
	int n;
	while(cin>>n && n!=0 ) {
		int a[N], b[N];
		double ans=0;
		memset(a, 0, sizeof(a));
		memset(b, 0, sizeof(b));
		for(int i=0;i<n;i++)
			cin>>a[i]>>b[i];
		for(int i=0;i<n-1;i++)
			ans+=a[i]*b[i+1]-a[i+1]*b[i];
		ans-=a[0]*b[n-1]-a[n-1]*b[0];
		ans/=2;
		cout<<fixed<<setprecision(1)<<ans<<endl;
	}
	return 0;
}


求任意多边形的面积

任意给出一个三角形ΔABC,设其顶点坐标分别为A(x1, y1),B(x2, y2),C(x3, y3),那么根据线性代数的知识,ΔABC的有向面积可表示为:其中,ΔABC顶点A、B、C逆时针给出时有...
  • qq_40830622
  • qq_40830622
  • 2018-04-17 15:48:15
  • 8

matlab 判定<em>多边形</em>顶点凹凸性

matlab求<em>任意多边形</em>(点集)最小外接圆算法 时间:2018...<em>曲线</em>拐点快速寻找算法+C代码 判断多边形点的凹凸性 ...多边形相关算法(<em>面积</em>、凹凸性、凸包、两多边形相交等...
  • 2018年04月17日 00:00

任意多边形的面积计算

任意给出一个三角形ΔABC,设其顶点坐标分别为A(x1, y1),B(x2, y2),C(x3, y3),那么根据线性代数的知识,ΔABC的有向面积可表示为: 其中,ΔABC顶点A、B、C逆时针给...
  • LemonGirl131
  • LemonGirl131
  • 2016-04-12 09:56:48
  • 5457

求任意多边形面积-有向面积

给定多边形的顶点坐标(有序),让你来求这个多边形的面积,你会怎么做? 我们知道,任意多边形都可以分割为N个三角形,所以,如果以这为突破点,那么我们第一步就是把给定的多边形,分割为数个三角形,分别求面...
  • tigercoder
  • tigercoder
  • 2017-04-13 20:15:30
  • 2863

判断点在任意多边形内部最简单的算法

新页面(new page)介绍了将样条曲线添加到此技术的内容。也可以访问多边形内最短路径页(shortest-path-through-polygonpage)! 图 1 图1...
  • jjj19891128
  • jjj19891128
  • 2014-03-31 18:11:10
  • 5073

多边形扩展算法

多边形扩展算法,c++实现
  • leon_zeng0
  • leon_zeng0
  • 2017-06-20 16:35:15
  • 1433

任意多边形面积计算

  • 2007年07月22日 12:04
  • 45KB
  • 下载

C++代码计算任意多边形的面积

刚刚开通了博客,今天正好有时间来完成自己的第一篇博客文章。希望对有需要的朋友有所帮助。            今天写了一个小代码:计算任意多边形的面积。临近毕业,毕设也忙得很,还好最近完成的差不多了...
  • Y_15751004297
  • Y_15751004297
  • 2017-05-16 20:30:26
  • 2136

多边形相交面积计算模版

/* 类型:多边形相交面积模板 */ #include #include #include #include #include using namespace std; #define ma...
  • Bcwan_
  • Bcwan_
  • 2016-09-05 00:49:05
  • 1582

[几何]计算不规则多边形的面积、中心、重心

最近项目用到:给一个不规则多边形加一个图标。(xx 地区发生暴雪,暴雪区域是多边形,给多边形中心加一个暴雪的图标) 之前的设计是,计算不规则多边形范围矩形bounds的中心点。这个比较简单,对于一些...
  • shao941122
  • shao941122
  • 2016-12-15 16:17:31
  • 5913
收藏助手
不良信息举报
您举报文章:求任意多边形的面积
举报原因:
原因补充:

(最多只允许输入30个字)