VOC和COCO数据集下载地址

该博客介绍了如何下载并组织PASCAL VOC与COCO两个数据集。VOC数据集包含VOC2007和VOC2012两个版本,每个版本包括JPEGImages、Annotations、ImageSets和SegmentationClass文件夹。COCO数据集则分为train2014、val2014和不同的标注文件,提供了多个数据子集的下载和解压步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

VOC文件夹结构

VOC_ROOT
|__ VOC2007
    |_ JPEGImages
    |_ Annotations
    |_ ImageSets
    |_ SegmentationClass
|__ VOC2012
    |_ JPEGImages
    |_ Annotations
    |_ ImageSets
    |_ SegmentationClass
|__ ...

用前先下载wget

mkdir voc && cd voc
# voc 2012
wget http://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar && tar -xvf VOCtrainval_11-May-2012.tar && rm VOCtrainval_11-May-2012.tar 
wget http://pjreddie.com/media/files/VOC2012test.tar && tar -xvf VOC2012test.tar && rm VOC2012test.tar 
mv VOCdevkit/VOC2012/ ./ 

# voc 2007
wget http://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar && tar -xvf VOCtrainval_06-Nov-2007.tar && rm VOCtrainval_06-Nov-2007.tar
wget http://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar && tar -xvf VOCtest_06-Nov-2007.tar  && rm VOCtest_06-Nov-2007.tar 
mv VOCdevkit/VOC2007/ ./
rm -rf VOCdevkit

COCO文件夹结构

COCO_ROOT
|__ annotations
    |_ instances_valminusminival2014.json
    |_ instances_minival2014.json
    |_ instances_train2014.json
    |_ instances_val2014.json
    |_ ...
|__ train2014
    |_ <im-1-name>.jpg
    |_ ...
    |_ <im-N-name>.jpg
|__ val2014
    |_ <im-1-name>.jpg
    |_ ...
    |_ <im-N-name>.jpg
|__ ...
# coco2017 train118k val5k
wget -c http://images.cocodataset.org/zips/train2017.zip &&
unzip train2017.zip && rm train2017.zip &&
wget -c http://images.cocodataset.org/annotations/annotations_trainval2017.zip &&
unzip annotations_trainval2017.zip && rm annotations_trainval2017.zip &&
wget -c http://images.cocodataset.org/zips/val2017.zip &&
unzip val2017.zip &&  rm val2017.zip

# coco2014 train83k val 41k
wget http://images.cocodataset.org/zips/train2014.zip && unzip train2014.zip && rm train2014.zip
wget http://images.cocodataset.org/zips/val2014.zip && unzip val2014.zip && rm val2014.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip && unzip annotations_trainval2014.zip && rm annotations_trainval2014.zip

## 5k image 'minival' subset and val2014 (set) minus minival (~35k images)
wget https://dl.dropboxusercontent.com/s/s3tw5zcg7395368/instances_valminusminival2014.json.zip?dl=0 && unzip instances_valminusminival2014.json.zip\?dl\=0  
mv instances_valminusminival2014.json annotations/ && rm instances_valminusminival2014.json.zip\?dl\=0  
wget https://dl.dropboxusercontent.com/s/o43o90bna78omob/instances_minival2014.json.zip?dl=0 &&  unzip instances_minival2014.json.zip?dl=0
mv instances_minival2014.json annotations/ && rm instances_minival2014.json.zip?dl=0
VOC(Visual Object Classes)COCOCommon Objects in Context)是两个常用的计算机视觉领域的数据集,它都用于目标检测、图像分类义分割等任务。下面是它们优缺点介绍: VOC数据集的优点: 1. 多类别:VOC数据集包含了20个常见的物体类别,适用于多类别目标检测任务。 2. 标注详细:VOC数据集提供了较为详细的标注信息,包括物体边界框类别标签。 3. 数据丰富:VOC数据集包含了大量的图像样本,适用于模型的训练评估。 VOC数据集的缺点: 1. 类别较少:相对于一些其他数据集VOC数据集的类别数量较少,可能无法满足某些特定任务的需求。 2. 分辨率较低:VOC数据集中的图像分辨率相对较低,可能会对一些需要高分辨率图像的任务造成限制。 COCO数据集的优点: 1. 大规模:COCO数据集包含了超过80个常见物体类别,以及超过33万张图像样本,适用于大规模目标检测分割任务。 2. 多样性:COCO数据集中的图像来自于不同的场景环境,具有较高的多样性,可以提升模型的泛化能力。 3. 详细标注:COCO数据集提供了物体边界框、关键点标注语义分割等详细的标注信息。 COCO数据集的缺点: 1. 数据集较大:由于COCO数据集规模较大,对于一些计算资源有限的场景,可能会带来一定的挑战。 2. 标注复杂:COCO数据集中的标注信息相对较为复杂,包括物体边界框、关键点等,可能需要更多的处理解析工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值