python读取excel数据 import xlrdclass excel_data(): #读取excel表数据 data_path="test.xlsx" #打开表格文件 excel = xlrd.open_workbook(data_path) #找到指定的表 sheet = excel.sheet_by_index(0) rows,clos = sheet.nrows,sheet.ncols print(rows,clos) def read_ex
Paddle detection 笔记(自用) 1. 数据准备2.安装cython_bbox失败这里参考这位博主博客地址总结:手动下载,更改setup.py 配置 然后在该目录下重新用pip 安装cython-bbox出现如图,就是成功了
PaddleOCR 弯曲文本检测与识别笔记 1.首先根据官方文档我们可以很轻易的找到弯曲文本检测模型由此可见对于弯曲文本检测效果很不错!但是!!!想去和识别模型串联使用时2.没有办法串联使用,只能换方法了,使用端到端的PGNet算法链接: https://gitee.com/paddlepaddle/PaddleOCR/blob/release/2.2/doc/doc_ch/pgnet.md.3.进行单张推理时出现的报错(っ °Д °;)っ)ValueError: too many values to unpack (expected
python 使用SVM进行简单的图像分类 1.首先进行数据处理import numpy as npfrom matplotlib import pyplot as pltfrom sklearn import svmfrom sklearn.datasets import load_digitsfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import accuracy_scoreimport cv2import osimpor
VOC和COCO数据集下载地址 VOC文件夹结构VOC_ROOT|__ VOC2007 |_ JPEGImages |_ Annotations |_ ImageSets |_ SegmentationClass|__ VOC2012 |_ JPEGImages |_ Annotations |_ ImageSets |_ SegmentationClass|__ ...用前先下载wgetmkdir voc && cd voc# voc 201
paddleOCR SystemError: (Fatal) Blocking queue is killed because the data reader raises an exception. 百度了很久,看了很多博主的都没有解决问题/(ㄒoㄒ)/~~最后请教大佬,帮我解决了第一可能是文件编码问题问题1:UnicodeEncodeError: ‘gbk’ codec can’t encode character ‘\ufeff’ in position 52: illegal multibyte sequence原因:由于本地系统是Win10中的cmd,默认GBK的编码,所以需要先将上述的Unicode的文本串先编码为GBK,然后再在cmd中显示出来,然后由于文本串中包含一些GBK中无法显
paddlOCR文字检测模型训练 这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar
PPOCRLabel使用说明 PPOCRLabel是一款适用于OCR领域的半自动化图形标注工具,内置PPOCR模型对数据自动标注和重新识别。使用python3和pyqt5编写,支持矩形框标注和四点标注模式,导出格式可直接用于PPOCR检测和识别模型的训练。安装1.环境搭建1.1安装PaddlePaddlepython3 -m pip install paddlepaddle-gpu==2.0.0 -i https://mirror.baidu.com/pypi/simple一般去官网选择适合版本安装1.2安装PaddleO
cv2.376: error: (-215:Assertion failed) size.width>0 && size.height>0 in function ‘cv::imshow‘ 大多是数情况是因为文件的路径问题路径问题可以参考这篇博客,个人认为很详细路径问题如果路径没问题那就是像我一样图片的格式与读取的模式不匹配import cv2cv2.imread(“filename”,flags)对于cv2,imread的关于通道数和位深的flags有四种选择:IMREAD_UNCHANGED = -1#不进行转化,比如保存为了16位的图片,读取出来仍然为16位。IMREAD_GRAYSCALE = 0#进行转化为灰度图,比如保存为了16位的图片,读取出来为8位,类型为CV_
模板匹配 模板匹配与卷积原理很像,模板在原图像上从原点开始滑动,计算模板与图像比较区域的差别程度,差异程度计算方法opencv中有六种,然后每次将计算结果放入一个矩阵中,作为结果输出,假如原图形大小为xy,模板大小为ab,则输出结果为(x-a+1)*(y-b+1)差异程度计算方法 推荐归一化TM_SQDIFF 这类方法利用平方差来进行匹配,最好匹配为0.匹配越差,匹配值越大.TM_SQDIFF_NO
图像轮廓 cv2.findContours(image, mode, method)mode:轮廓检索模式CV_RETR_EXTERNAL:只检索最外面的轮廓CV_RETR_LIST:检索所有轮廓,并保存到链表中CV_RETR_CCOMP:检索所有轮廓,并将其分为两层,顶层是各部分的外部边界,第二层是空洞的边界CV_RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次 (最常用)method:轮廓逼近方法CV_CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓
图像金字塔 高斯金字塔向下采样(缩小)向着塔尖进行将图像与高斯内核进行卷积将所有的偶数行和列去除向上采样(放大)向着塔底进行将图像在每个方向扩大原来的两倍,新增的行和列用0填充再将放大后的图像与高斯内核进行卷积得到近似值import cv2#opencv 的读取格式是BGRimport matplotlib.pyplot as pltimport numpy as npdef cv_show(name,img): cv2.imshow(name,img) cv2.waitK
OpenCV图像处理基本操作 图像的读取cv2.IMREAD_COLOR 彩色图像cv2.IMREAD_GRAYSCALE 灰色图像import cv2#opencv 的读取格式是BGRimport matplotlib.pyplot as pltimport numpy as np#图像的显示,也可以创建多个窗口img=cv2.imread('tu.jpg')cv2.imshow('name',img)#等待时间毫秒级,0表示任意键终止cv2.waitKey(0)cv2.destroyAllWindows()
python 实现Fisher线性判别实例 基于Fisher准则的线性分类器设计已知有两类数据和二者的先验概率,已知P(w1)=0.6,P(w2)=0.4。W1和W2类数据点的对应坐标分别为:x1=0.23 1.52 0.65 0.77 1.05 1.19 0.29 0.25 0.66 0.56 0.90 0.13 -0.54 0.94 -0.21 0.05 -0.08 0.73 0.33 1.06 -0.02 0.11 0.31 0.66y1=2.34 2.19 1.67 1.63 1.78 2.01 2.06 2.12 2.47 1.5
python二维数组的创建 首先python中并没有数组这种数据结构实际上的二维数组就是二维列表有两种方法成功创建二维列表1.直接定义matrix = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]简单直接,但是数组过大会被累死的(╥╯^╰╥)2.间接定义(标准方式)matrix=[[0 for i in range(2)]for i in range(24)]创建一个2*24的二维列表,是不是简单很多啊~注意列表中使用*是重复的意思array = [0, 0]matrix = [arr