贝叶斯课后习题(一)先验分布与后验分布

先验分布与后验分布

  1. 先验概率可以写为: π ( θ ) { 0.1 , 0.7 0.2 , 0.3 \pi(\theta)\begin{cases}0.1,0.7\\0.2,0.3\end{cases} π(θ){0.1,0.70.2,0.3

    x服从二项分布 B ( 8 , θ ) B(8,\theta) B(8,θ)

    p ( x ∣ θ ) = C 8 x θ x ( 1 − θ ) n − x = { C 8 x 0. 1 x ( 1 − 0.1 ) 8 − x C 8 x 0. 2 x ( 1 − 0.2 ) 8 − x p(x|\theta)=C_8^x\theta^x(1-\theta)^{n-x}=\begin{cases}C_8^x0.1^x(1-0.1)^{8-x}\\C_8^x0.2^x(1-0.2)^{8-x}\end{cases} p(xθ)=C8xθx(1θ)nx={C8x0.1x(10.1)8xC8x0.2x(10.2)8x

    可有联合分布函数为 h ( x , θ ) = p ( x ∣ θ ) π ( θ ) = { C 8 x 0. 1 x ( 1 − 0.1 ) 8 − x 0.7 C 8 x 0. 2 x ( 1 − 0.2 ) 8 − x 0.3 h(x,\theta)=p(x|\theta)\pi(\theta)=\begin{cases}C_8^x0.1^x(1-0.1)^{8-x}0.7\\C_8^x0.2^x(1-0.2)^{8-x}0.3\end{cases} h(x,θ)=p(xθ)π(θ)={C8x0.1x(10.1)8x0.7C8x0.2x(10.2)8x0.3

    可有x的边缘分布为 m ( x ) = C 8 x 0. 1 x ( 1 − 0.1 ) 8 − x 0.7 + C 8 x 0. 2 x ( 1 − 0.2 ) 8 − x 0.3 m(x)=C_8^x0.1^x(1-0.1)^{8-x}0.7+C_8^x0.2^x(1-0.2)^{8-x}0.3 m(x)=C8x0.1x(10.1)8x0.7+C8x0.2x(10.2)8x0.3

    可有后验分布为 π ( θ ∣ x ) = h ( x , θ ) m ( x ) = { C 8 x 0. 1 x ( 1 − 0.1 ) 8 − x 0.7 C 8 x 0. 1 x ( 1 − 0.1 ) 8 − x 0.7 + C 8 x 0. 2 x ( 1 − 0.2 ) 8 − x 0.3 C 8 x 0. 2 x ( 1 − 0.2 ) 8 − x 0.3 C 8 x 0. 1 x ( 1 − 0.1 ) 8 − x 0.7 + C 8 x 0. 2 x ( 1 − 0.2 ) 8 − x 0.3 \pi(\theta|x)=\frac{h(x,\theta)}{m(x)}=\begin{cases}\frac{C_8^x0.1^x(1-0.1)^{8-x}0.7}{C_8^x0.1^x(1-0.1)^{8-x}0.7+C_8^x0.2^x(1-0.2)^{8-x}0.3}\\\frac{C_8^x0.2^x(1-0.2)^{8-x}0.3}{C_8^x0.1^x(1-0.1)^{8-x}0.7+C_8^x0.2^x(1-0.2)^{8-x}0.3}\end{cases} π(θx)=m(x)h(x,θ)=C8x0.1x(10.1)8x0.7+C8x0.2x(10.2)8x0.3C8x0.1x(10.1)8x0.7C8x0.1x(10.1)8x0.7+C8x0.2x(10.2)8x0.3C8x0.2x(10.2)8x0.3

    带入x=3可求得 π ( θ ∣ x ) = { 0.1 , 0.5418274451 0.2 , 0.4581725549 \pi(\theta|x)=\begin{cases}0.1,0.5418274451\\0.2,0.4581725549\end{cases} π(θx)={0.1,0.54182744510.2,0.4581725549

  2. 先验分布概率可以有: π ( θ ) = { 1.0 , 0.4 1.5 , 0.6 \pi(\theta)=\begin{cases}1.0,0.4\\1.5,0.6\end{cases} π(θ)={1.0,0.41.5,0.6

    x服从泊松分布 p ( x ∣ θ ) = θ x e − θ Γ ( x + 1 ) = { e − 1 Γ ( x + 1 ) 1. 5 x e − 1.5 Γ ( x + 1 ) p(x|\theta)=\frac{\theta^xe^{-\theta}}{\Gamma(x+1)}=\begin{cases}\frac{e^{-1}}{\Gamma(x+1)}\\\frac{1.5^{x}e^{-1.5}}{\Gamma(x+1)}\end{cases} p(xθ)=Γ(x+1)θxeθ={Γ(x+1)e1Γ(x+1)1.5xe1.5

    有联合概率函数 h ( x , θ ) = p ( x ∣ θ ) π ( θ ) = { e − 1 Γ ( x + 1 ) 0.4 1. 5 x e − 1.5 Γ ( x + 1 ) 0.6 h(x,\theta)=p(x|\theta)\pi(\theta)=\begin{cases}\frac{e^{-1}}{\Gamma(x+1)}0.4\\\frac{1.5^{x}e^{-1.5}}{\Gamma(x+1)}0.6\end{cases} h(x,θ)=p(xθ)π(θ)={Γ(x+1)e10.4Γ(x+1)1.5xe1.50.6

    有x的边缘分布 m ( x ) = e − 1 Γ ( x + 1 ) 0.4 + 1. 5 x e − 1.5 Γ ( x + 1 ) 0.6 m(x)=\frac{e^{-1}}{\Gamma(x+1)}0.4+\frac{1.5^{x}e^{-1.5}}{\Gamma(x+1)}0.6 m(x)=Γ(x+1)e10.4+Γ(x+1)1.5xe1.50.6

    可有后验分布 π ( θ ∣ x ) = h ( x , θ ) m ( x ) = { e − 1 Γ ( x + 1 ) 0.4 e − 1 Γ ( x + 1 ) 0.4 + 1. 5 x e − 1.5 Γ ( x + 1 ) 0.6 1. 5 x e − 1.5 Γ ( x + 1 ) 0.6 e − 1 Γ ( x + 1 ) 0.4 + 1. 5 x e − 1.5 Γ ( x + 1 ) 0.6 \pi(\theta|x)=\frac{h(x,\theta)}{m(x)}=\begin{cases}\frac{\frac{e^{-1}}{\Gamma(x+1)}0.4}{\frac{e^{-1}}{\Gamma(x+1)}0.4+\frac{1.5^{x}e^{-1.5}}{\Gamma(x+1)}0.6}\\\frac{\frac{1.5^{x}e^{-1.5}}{\Gamma(x+1)}0.6}{\frac{e^{-1}}{\Gamma(x+1)}0.4+\frac{1.5^{x}e^{-1.5}}{\Gamma(x+1)}0.6}\end{cases} π(θx)=m(x)h(x,θ)=Γ(x+1)e10.4+Γ(x+1)1.5xe1.50.6Γ(x+1)e10.4Γ(x+1)e10.4+Γ(x+1)1.5xe1.50.6Γ(x+1)1.5xe1.50.6

    带入x=3,可有 π ( θ ∣ x ) = { 0.2456663555 0.7543336445 \pi(\theta|x)=\begin{cases}0.2456663555\\0.7543336445\end{cases} π(θx)={0.24566635550.7543336445

  3. 先求先验分布

    1. π ( θ ) = { 1 0 < θ < 1 0 o t h e r \pi(\theta)=\begin{cases}1&0<\theta<1\\0&other\end{cases} π(θ)={100<θ<1other

      x是满足二项分布的,即 p ( x ∣ θ ) = C 8 x θ x ( 1 − θ ) 8 − x p(x|\theta)=C_8^x\theta^x(1-\theta)^{8-x} p(xθ)=C8xθx(1θ)8x

      可有联合密度函数 h ( x , θ ) = p ( x ∣ θ ) π ( θ ) = C 8 x θ x ( 1 − θ ) n − x , 0 < θ < 1 h(x,\theta)=p(x|\theta)\pi(\theta)=C_8^x\theta^x(1-\theta)^{n-x},0<\theta<1 h(x,θ)=p(xθ)π(θ)=C8xθx(1θ)nx,0<θ<1

      可有x的边缘分布 m ( x ) = ∫ 0 1 h ( x , θ ) d θ = C 8 x ∫ 0 1 θ x ( 1 − θ ) n − x d θ m(x)=\int_0^1h(x,\theta)d\theta=C_8^x\int_0^1\theta^x(1-\theta)^{n-x}d\theta m(x)=01h(x,θ)dθ=C8x01θx(1θ)nxdθ

      可有 后验分布 π ( θ ∣ x ) = h ( x ∣ θ ) m ( x ) = θ x ( 1 − θ ) n − x ∫ 0 1 θ x ( 1 − θ ) n − x d θ = θ x ( 1 − θ ) n − x Γ ( x + 1 ) Γ ( 8 − x + 1 ) Γ ( x + 1 + 8 − x + 1 ) = Γ ( 10 ) θ x ( 1 − θ ) 8 − x Γ ( x + 1 ) Γ ( 9 − x ) \pi(\theta|x)=\frac{h(x|\theta)}{m(x)}=\frac{\theta^x(1-\theta)^{n-x}}{\int_0^1\theta^x(1-\theta)^{n-x}d\theta}=\frac{\theta^x(1-\theta)^{n-x}}{\frac{\Gamma(x+1)\Gamma(8-x+1)}{\Gamma(x+1+8-x+1)}}=\frac{\Gamma(10)\theta^x(1-\theta)^{8-x}}{\Gamma(x+1)\Gamma(9-x)} π(θx)=m(x)h(xθ)=01θx(1θ)nxdθθx(1θ)nx=Γ(x+1+8x+1)Γ(x+1)Γ(8x+1)θx(1θ)nx=Γ(x+1)Γ(9x)Γ(10)θx(1θ)8x

      带入x=3可有 π ( θ ∣ x = 3 ) = θ 3 ( 1 − θ ) 8 − 3 ∫ 0 1 θ 3 ( 1 − θ ) 8 − 3 d θ = Γ ( 10 ) θ 3 ( 1 − θ ) 8 − 3 Γ ( 3 + 1 ) Γ ( 9 − 3 ) = 504 θ 3 ( 1 − θ ) 5 \pi(\theta|x=3)=\frac{\theta^3(1-\theta)^{8-3}}{\int_0^1\theta^3(1-\theta)^{8-3}d\theta}=\frac{\Gamma(10)\theta^3(1-\theta)^{8-3}}{\Gamma(3+1)\Gamma(9-3)}=504\theta^3(1-\theta)^5 π(θx=3)=01θ3(1θ)83dθθ3(1θ)83=Γ(3+1)Γ(93)Γ(10)θ3(1θ)83=504θ3(1θ)5

    2. π ( θ ) = { 2 ( 1 − θ ) 0 < θ < 1 0 o t h e r \pi(\theta)=\begin{cases}2(1-\theta)&0<\theta<1\\0&other\end{cases} π(θ)={2(1θ)00<θ<1other

      x是满足二项分布的,即 p ( x ∣ θ ) = C 8 x θ x ( 1 − θ ) 8 − x p(x|\theta)=C_8^x\theta^x(1-\theta)^{8-x} p(xθ)=C8xθx(1θ)8x

      可有联合密度函数 h ( x , θ ) = p ( x ∣ θ ) π ( θ ) = C 8 x θ x ( 1 − θ ) n − x 2 ( 1 − θ ) , 0 < θ < 1 h(x,\theta)=p(x|\theta)\pi(\theta)=C_8^x\theta^x(1-\theta)^{n-x}2(1-\theta),0<\theta<1 h(x,θ)=p(xθ)π(θ)=C8xθx(1θ)nx2(1θ),0<θ<1

      可有x的边缘分布 m ( x ) = ∫ 0 1 h ( x , θ ) d θ = 2 C 8 x ∫ 0 1 θ x ( 1 − θ ) n − x + 1 d θ m(x)=\int_0^1h(x,\theta)d\theta=2C_8^x\int_0^1\theta^x(1-\theta)^{n-x+1}d\theta m(x)=01h(x,θ)dθ=2C8x01θx(1θ)nx+1dθ

      可有后验分布 π ( θ ∣ x ) = h ( x ∣ θ ) m ( x ) = θ x ( 1 − θ ) n − x + 1 ∫ 0 1 θ x ( 1 − θ ) n − x + 1 d θ = θ x ( 1 − θ ) n − x + 1 Γ ( x + 1 ) Γ ( 8 − x + 1 + 1 ) Γ ( x + 1 + 8 − x + 1 + 1 ) = Γ ( 11 ) θ x ( 1 − θ ) 9 − x Γ ( x + 1 ) Γ ( 10 − x ) \pi(\theta|x)=\frac{h(x|\theta)}{m(x)}=\frac{\theta^x(1-\theta)^{n-x+1}}{\int_0^1\theta^x(1-\theta)^{n-x+1}d\theta}=\frac{\theta^x(1-\theta)^{n-x+1}}{\frac{\Gamma(x+1)\Gamma(8-x+1+1)}{\Gamma(x+1+8-x+1+1)}}=\frac{\Gamma(11)\theta^x(1-\theta)^{9-x}}{\Gamma(x+1)\Gamma(10-x)} π(θx)=m(x)h(xθ)=01θx(1θ)nx+1dθθx(1θ)nx+1=Γ(x+1+8x+1+1)Γ(x+1)Γ(8x+1+1)θx(1θ)nx+1=Γ(x+1)Γ(10x)Γ(11)θx(1θ)9x

      带入x=3可有 π ( θ ∣ x = 3 ) = θ 3 ( 1 − θ ) n − 3 + 1 Γ ( 3 + 1 ) Γ ( 8 − 3 + 1 + 1 ) Γ ( 3 + 1 + 8 − 3 + 1 + 1 ) = Γ ( 11 ) θ 3 ( 1 − θ ) 9 − 3 Γ ( 3 + 1 ) Γ ( 10 − 3 ) = 840 θ 3 ( 1 − θ ) 6 \pi(\theta|x=3)=\frac{\theta^3(1-\theta)^{n-3+1}}{\frac{\Gamma(3+1)\Gamma(8-3+1+1)}{\Gamma(3+1+8-3+1+1)}}=\frac{\Gamma(11)\theta^3(1-\theta)^{9-3}}{\Gamma(3+1)\Gamma(10-3)}=840\theta^3(1-\theta)^6 π(θx=3)=Γ(3+1+83+1+1)Γ(3+1)Γ(83+1+1)θ3(1θ)n3+1=Γ(3+1)Γ(103)Γ(11)θ3(1θ)93=840θ3(1θ)6

  4. π ( θ ∣ x ) ∝ p ( θ ∣ x ) π ( θ ) \pi(\theta|x)\varpropto p(\theta|x)\pi(\theta) π(θx)p(θx)π(θ)显然易得

  5. 首先求先验分布 π ( θ ) = { 1 10 ( 10 , 20 ) 0 o t h e r \pi(\theta)=\begin{cases}\frac1{10}&(10,20)\\0&other\end{cases} π(θ)={1010(10,20)other

    1. x满足 p ( x ∣ θ ) = { 1 ( θ − 1 2 , θ + 1 2 ) 0 o t h e r p(x|\theta)=\begin{cases}1&(\theta-\frac12,\theta+\frac12)\\0&other\end{cases} p(xθ)={10(θ21,θ+21)other

      可有联合概率函数 h ( x , θ ) = p ( x ∣ θ ) π ( θ ) = 1 10 , 11.5 < θ < 12.5 h(x,\theta)=p(x|\theta)\pi(\theta)=\frac1{10},11.5<\theta<12.5 h(x,θ)=p(xθ)π(θ)=101,11.5<θ<12.5

      可有x的边缘分布 m ( x ) = ∫ 11.5 12.5 1 10 d θ = 0.1 m(x)=\int_{11.5}^{12.5}\frac1{10}d\theta=0.1 m(x)=11.512.5101dθ=0.1

      可有后验分布 π ( θ ∣ x ) = 1 , 11.5 < θ < 12.5 \pi(\theta|x)=1,11.5<\theta<12.5 π(θx)=1,11.5<θ<12.5

    2. x满足 p ( x ∣ θ ) = { 1 ( θ − 1 2 , θ + 1 2 ) 0 o t h e r p(x|\theta)=\begin{cases}1&(\theta-\frac12,\theta+\frac12)\\0&other\end{cases} p(xθ)={10(θ21,θ+21)other

      可有联合概率函数 h ( x , θ ) = p ( x ∣ θ ) π ( θ ) = 1 10 , 11.5 < θ < 11.6 h(x,\theta)=p(x|\theta)\pi(\theta)=\frac1{10},11.5<\theta<11.6 h(x,θ)=p(xθ)π(θ)=101,11.5<θ<11.6这里是 θ \theta θ的范围取交集,即下限的上限,上限的下限

      可有x的边缘分布 m ( x ) = ∫ 11.5 11.6 1 10 d θ = 0.01 m(x)=\int_{11.5}^{11.6}\frac1{10}d\theta=0.01 m(x)=11.511.6101dθ=0.01

      可有后验分布 π ( θ ∣ x ) = 10 , 11.5 < θ < 11.6 \pi(\theta|x)=10,11.5<\theta<11.6 π(θx)=10,11.5<θ<11.6

  6. 先验分布 π ( λ ) ∝ λ α − 1 e − β λ \pi(\lambda)\varpropto\lambda^{\alpha-1}e^{-\beta\lambda} π(λ)λα1eβλ

    x的概率函数 p ( x ∣ λ ) ∝ λ x e − λ p(x|\lambda)\varpropto\lambda^xe^{-\lambda} p(xλ)λxeλ

    λ \lambda λ的后验分布 π ( λ ∣ x ) ∝ p ( x ∣ λ ) π ( λ ) ∝ λ x e − λ λ α − 1 e − β λ ∝ λ x + α − 1 e − ( β + 1 ) λ \pi(\lambda|x)\varpropto p(x|\lambda)\pi(\lambda)\varpropto\lambda^xe^{-\lambda}\lambda^{\alpha-1}e^{-\beta\lambda}\varpropto\lambda^{x+\alpha-1}e^{-(\beta+1)\lambda} π(λx)p(xλ)π(λ)λxeλλα1eβλλx+α1e(β+1)λ

    可以看到,这是一个伽马分布 G a ( x + α , β + 1 ) Ga(x+\alpha,\beta+1) Ga(x+α,β+1)

  7. 先求先验

    1. π ( θ ) = { 1 ( 0 , 1 ) 0 o t h e r \pi(\theta)=\begin{cases}1&(0,1)\\0&other\end{cases} π(θ)={10(0,1)other

      再求x的概率函数 p ( x ∣ θ ) = 2 x θ 2 p(x|\theta)=\frac{2x}{\theta^2} p(xθ)=θ22x

      可有联合概率函数 h ( x , θ ) = p ( x ∣ θ ) π ( θ ) = 2 x θ 2 , x < θ < 1 h(x,\theta)=p(x|\theta)\pi(\theta)=\frac{2x}{\theta^2},x<\theta<1 h(x,θ)=p(xθ)π(θ)=θ22x,x<θ<1

      可有x的边缘分布 m ( x ) = ∫ x 1 h ( x , θ ) d θ = ∫ x 1 2 θ 2 d θ = 2 ( 1 − x ) m(x)=\int_x^1h(x,\theta)d\theta=\int_x^1\frac{2}{\theta^2}d\theta=2(1-x) m(x)=x1h(x,θ)dθ=x1θ22dθ=2(1x)

      可有后验分布 π ( θ ∣ x ) = h ( x , θ ) m ( x ) = x 1 − x θ − 2 , x < θ < 1 \pi(\theta|x)=\frac{h(x,\theta)}{m(x)}=\frac{x}{1-x}\theta^{-2},x<\theta<1 π(θx)=m(x)h(x,θ)=1xxθ2,x<θ<1

    2. π ( θ ) = { 3 θ 2 0 < θ < 1 0 o t h e r \pi(\theta)=\begin{cases}3\theta^2&0<\theta<1\\0&other\end{cases} π(θ)={3θ200<θ<1other

      再求x的概率函数 p ( x ∣ θ ) = 2 x θ 2 p(x|\theta)=\frac{2x}{\theta^2} p(xθ)=θ22x

      可有联合概率函数 h ( x , θ ) = p ( x ∣ θ ) π ( θ ) = 2 x θ 2 3 θ 2 = 6 x , x < θ < 1 h(x,\theta)=p(x|\theta)\pi(\theta)=\frac{2x}{\theta^2}3\theta^2=6x,x<\theta<1 h(x,θ)=p(xθ)π(θ)=θ22x3θ2=6x,x<θ<1

      可有x的边缘分布 m ( x ) = ∫ x 1 6 x d θ = 6 x ( 1 − x ) m(x)=\int_x^16xd\theta=6x(1-x) m(x)=x16xdθ=6x(1x)

      可有后验分布 π ( θ ∣ x ) = h ( x , θ ) m ( x ) = 6 x 6 x ( 1 − x ) = 1 1 − x , x < θ < 1 \pi(\theta|x)=\frac{h(x,\theta)}{m(x)}=\frac{6x}{6x(1-x)}=\frac1{1-x},x<\theta<1 π(θx)=m(x)h(x,θ)=6x(1x)6x=1x1,x<θ<1

  8. 先求先验分布 π ( θ ) = Γ ( 202 ) Γ ( 2 ) Γ ( 200 ) θ 1 ( 1 − θ ) 199 \pi(\theta)=\frac{\Gamma(202)}{\Gamma(2)\Gamma(200)}{\theta}^{1}(1-\theta)^{199} π(θ)=Γ(2)Γ(200)Γ(202)θ1(1θ)199

    再求x的概率函数,为二项分布 B ( 100 , θ ) , p ( x ∣ θ ) = C 100 x θ x ( 1 − θ ) 100 − x B(100,\theta),p(x|\theta)=C_{100}^x\theta^x(1-\theta)^{100-x} B(100,θ),p(xθ)=C100xθx(1θ)100x

    可有联合概率函数 h ( x , θ ) = p ( x ∣ θ ) π ( θ ) = C 100 x θ x ( 1 − θ ) 100 − x Γ ( 202 ) Γ ( 2 ) Γ ( 200 ) θ 1 ( 1 − θ ) 199 , 0 < θ < 1 h(x,\theta)=p(x|\theta)\pi(\theta)=C_{100}^x\theta^x(1-\theta)^{100-x}\frac{\Gamma(202)}{\Gamma(2)\Gamma(200)}{\theta}^{1}(1-\theta)^{199},0<\theta<1 h(x,θ)=p(xθ)π(θ)=C100xθx(1θ)100xΓ(2)Γ(200)Γ(202)θ1(1θ)199,0<θ<1

    可有x的边缘分布 m ( x ) = ∫ 0 1 h ( x , θ ) d θ = ∫ 0 1 C 100 x θ x ( 1 − θ ) 100 − x Γ ( 202 ) Γ ( 2 ) Γ ( 200 ) θ 1 ( 1 − θ ) 199 = C 100 x Γ ( 202 ) Γ ( 2 ) Γ ( 200 ) ∫ 0 1 θ x ( 1 − θ ) 100 − x θ 1 ( 1 − θ ) 199 d θ m(x)=\int_0^1h(x,\theta)d\theta=\int_0^1C_{100}^x\theta^x(1-\theta)^{100-x}\frac{\Gamma(202)}{\Gamma(2)\Gamma(200)}{\theta}^{1}(1-\theta)^{199}\\=C_{100}^x\frac{\Gamma(202)}{\Gamma(2)\Gamma(200)}\int_0^1\theta^x(1-\theta)^{100-x}{\theta}^{1}(1-\theta)^{199}d\theta m(x)=01h(x,θ)dθ=01C100xθx(1θ)100xΓ(2)Γ(200)Γ(202)θ1(1θ)199=C100xΓ(2)Γ(200)Γ(202)01θx(1θ)100xθ1(1θ)199dθ

    可有后验分布 π ( θ ∣ x ) = h ( x , θ ) m ( x ) = C 100 x Γ ( 202 ) Γ ( 2 ) Γ ( 200 ) θ x ( 1 − θ ) 100 − x θ 1 ( 1 − θ ) 199 C 100 x Γ ( 202 ) Γ ( 2 ) Γ ( 200 ) ∫ 0 1 θ x ( 1 − θ ) 100 − x θ 1 ( 1 − θ ) 199 d θ = θ x ( 1 − θ ) 100 − x θ 1 ( 1 − θ ) 199 ∫ 0 1 θ x ( 1 − θ ) 100 − x θ 1 ( 1 − θ ) 199 d θ = θ x ( 1 − θ ) 100 − x θ 1 ( 1 − θ ) 199 Γ ( x + 1 + 1 ) Γ ( 299 − x + 1 ) Γ ( 302 ) \pi(\theta|x)=\frac{h(x,\theta)}{m(x)}=\frac{C_{100}^x\frac{\Gamma(202)}{\Gamma(2)\Gamma(200)}\theta^x(1-\theta)^{100-x}{\theta}^{1}(1-\theta)^{199}}{C_{100}^x\frac{\Gamma(202)}{\Gamma(2)\Gamma(200)}\int_0^1\theta^x(1-\theta)^{100-x}{\theta}^{1}(1-\theta)^{199}d\theta}\\=\frac{\theta^x(1-\theta)^{100-x}{\theta}^{1}(1-\theta)^{199}}{\int_0^1\theta^x(1-\theta)^{100-x}{\theta}^{1}(1-\theta)^{199}d\theta}=\frac{\theta^x(1-\theta)^{100-x}{\theta}^{1}(1-\theta)^{199}}{\frac{\Gamma(x+1+1)\Gamma(299-x+1)}{\Gamma(302)}} π(θx)=m(x)h(x,θ)=C100xΓ(2)Γ(200)Γ(202)01θx(1θ)100xθ1(1θ)199dθC100xΓ(2)Γ(200)Γ(202)θx(1θ)100xθ1(1θ)199=01θx(1θ)100xθ1(1θ)199dθθx(1θ)100xθ1(1θ)199=Γ(302)Γ(x+1+1)Γ(299x+1)θx(1θ)100xθ1(1θ)199

    带入x=3有后验分布 π ( θ ∣ x = 3 ) = θ 4 ( 1 − θ ) 296 4 ! 296 ! 302 ! \pi(\theta|x=3)=\frac{\theta^4(1-\theta)^{296}}{\frac{4!296!}{302!}} π(θx=3)=302!4!296!θ4(1θ)296 B e ( 5 , 297 ) Be(5,297) Be(5,297)

  9. 先求先验分布 N ( 172.72 , 2.54 ) N(172.72,2.54) N(172.72,2.54)

    x的分布为 N ( θ , 5 2 ) N(\theta,5^2) N(θ,52)

    1. x ‾ − N ( θ , 5 2 10 ) \overline{x}-N(\theta,\frac{5^2}{10}) xN(θ,1052)

      p ( x ‾ ∣ θ ) ∝ ( 1 2 π 25 10 ) e x p { ( x ‾ − θ ) 2 5 } p(\overline{x}|\theta)\varpropto(\frac1{\sqrt{2\pi\frac{25}{10}}})exp\{\frac{(\overline{x}-\theta)^2}{5}\} p(xθ)(2π1025 1)exp{5(xθ)2}

      可有 π ( θ ) ∝ ( 1 2 π 2.54 ) e x p { ( θ − 172.72 ) 2 2 ∗ 2.54 } \pi(\theta)\varpropto(\frac1{\sqrt{2\pi2.54}})exp\{\frac{(\theta-172.72)^2}{2*2.54}\} π(θ)(2π2.54 1)exp{22.54(θ172.72)2}

      可有 π ( θ ∣ x ) ∝ p ( x ∣ θ ) π ( θ ) ∝ ( 1 2 π 2.5 ∗ 2.54 ) e x p { ( 176.53 − θ ) 2 5 + ( θ − 172.72 ) 2 2 ∗ 2.54 } \pi(\theta|x)\varpropto p(x|\theta)\pi(\theta)\\\varpropto(\frac1{\sqrt{2\pi2.5*2.54}})exp\{\frac{(176.53-\theta)^2}{5}+\frac{(\theta-172.72)^2}{2*2.54}\} π(θx)p(xθ)π(θ)(2π2.52.54 1)exp{5(176.53θ)2+22.54(θ172.72)2}

      可有 θ ∣ x ‾ − N ( 174.64 , 1.26 ) \theta|\overline{x}-N(174.64,1.26) θxN(174.64,1.26)

    2. 想要在区间上的概率最大,就需要让这个区间的重点与分布的均值重合,所以区间是 [ 173.39 , 175.89 ] [173.39,175.89] [173.39,175.89]

    3. 求积分即可, p ( θ ∈ Θ ) = ∫ 173.39 175.89 π ( θ ∣ x ) d θ p(\theta\in\Theta)=\int_{173.39}^{175.89}\pi(\theta|x)d\theta p(θΘ)=173.39175.89π(θx)dθ

  10. 首先,有 x ‾ − N ( θ , 1 25 ) \overline{x}-N(\theta,\frac1{25}) xN(θ,251)

    后有 π ( θ ) − N ( μ , σ 2 ) \pi(\theta)-N(\mu,\sigma^2) π(θ)N(μ,σ2)

    可有 π ( θ ) ∝ ( 1 σ ) e x p { ( θ − μ ) 2 2 σ 2 } \pi(\theta)\varpropto(\frac1{\sigma})exp\{\frac{(\theta-\mu)^2}{2\sigma^2}\} π(θ)(σ1)exp{2σ2(θμ)2}

    可有 p ( x ‾ ∣ θ ) = e x p { ( x ‾ − θ ) 2 2 / 25 } p(\overline{x}|\theta)=exp\{\frac{(\overline{x}-\theta)^2}{2/25}\} p(xθ)=exp{2/25(xθ)2}

    π ( θ ∣ x ‾ ) ∝ e x p { ( θ − μ ) 2 2 σ 2 + 25 ( x ‾ − θ ) 2 2 } ∝ e x p { ( θ − μ ) 2 + 25 σ 2 ( x ‾ − θ ) 2 2 σ 2 } \pi(\theta|\overline x)\varpropto exp\{\frac{(\theta-\mu)^2}{2\sigma^2}+\frac{25(\overline{x}-\theta)^2}{2}\}\\\varpropto exp\{\frac{(\theta-\mu)^2+25\sigma^2(\overline x-\theta)^2}{2\sigma^2}\} π(θx)exp{2σ2(θμ)2+225(xθ)2}exp{2σ2(θμ)2+25σ2(xθ)2}

    转为正态分布的形式,可有 π ( θ ∣ x ‾ ) ∝ e x p { ( 25 σ 2 + 1 ) θ 2 − ( 50 σ 2 x ‾ + 2 μ ) θ + μ 2 + 25 σ 2 x ‾ 2 2 σ 2 } \pi(\theta|\overline x)\varpropto exp\{\frac{(25\sigma^2+1)\theta^2-(50\sigma^2\overline{x}+2\mu)\theta+\mu^2+25\sigma^2\overline x^2}{2\sigma^2}\} π(θx)exp{2σ2(25σ2+1)θ2(50σ2x+2μ)θ+μ2+25σ2x2}

    可有,后验分布的方差为 σ 2 25 σ 2 + 1 \frac{\sigma^2}{25\sigma^2+1} 25σ2+1σ2,可化简为 1 25 + 1 / σ 2 \frac1{25+1/\sigma^2} 25+1/σ21,其中 σ 2 \sigma^2 σ2是先验分布的方差

    可以看到,后验方差存在上界 1 25 \frac1{25} 251,故后验标准差必然存在上界 1 5 \frac15 51

  11. 先求先验分布 π ( θ ) = { 192 / θ 4 θ ≥ 4 0 θ < 0 \pi(\theta)=\begin{cases}192/\theta^4&\theta\ge4\\0&\theta<0\end{cases} π(θ)={192/θ40θ4θ<0

    根据样本可有 p ( x ∣ θ ) = 1 θ 3 , 0 < x < θ p(x|\theta)=\frac1{\theta^3},0<x<\theta p(xθ)=θ31,0<x<θ

    可有联合概率函数 h ( x , θ ) = 192 / θ 7 , 0 < x < θ , θ > 8 h(x,\theta)=192/\theta^7,0<x<\theta,\theta>8 h(x,θ)=192/θ7,0<x<θ,θ>8

    可有x的边缘分布 m ( x ) = ∫ 8 ∞ 192 / θ 7 d θ m(x)=\int_8^{\infty}192/\theta^7d\theta m(x)=8192/θ7dθ

    可有后验分布 π ( θ ∣ x ) = h ( x , θ ) m ( x ) = 8192 θ 7 \pi(\theta|x)=\frac{h(x,\theta)}{m(x)}=\frac{8192}{\theta^7} π(θx)=m(x)h(x,θ)=θ78192

  12. 首先有先验分布 π ( θ ) ∝ α θ 0 α θ α − 1 , θ > θ 0 \pi(\theta)\varpropto \frac{\alpha\theta_0^{\alpha}}{\theta^{\alpha-1}},\theta>\theta_0 π(θ)θα1αθ0α,θ>θ0

    后有x的概率函数 p ( x ∣ θ ) ∝ 1 θ p(x|\theta)\varpropto \frac1{\theta} p(xθ)θ1

    π ( θ ∣ x ) ∝ p ( x ∣ θ ) π ( θ ) ∝ α θ 0 α θ α − 1 1 θ , θ > θ 0 ∝ α θ 0 α θ α \pi(\theta|x)\varpropto p(x|\theta)\pi(\theta)\varpropto \frac{\alpha\theta_0^{\alpha}}{\theta^{\alpha-1}}\frac1{\theta},\theta>\theta_0\varpropto \frac{\alpha\theta_0^{\alpha}}{\theta^{\alpha}} π(θx)p(xθ)π(θ)θα1αθ0αθ1,θ>θ0θααθ0α

    可以看到,后验分布仍然是pareto分布

  13. 根据均值和方差可以求出, α α + β = 1 / 3 , α β ( α + β ) 2 ( α + β + 1 ) = 1 / 45 \frac{\alpha}{\alpha+\beta}=1/3,\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}=1/45 α+βα=1/3,(α+β)2(α+β+1)αβ=1/45

    可有 α = 3 , β = 6 \alpha=3,\beta=6 α=3,β=6

    此时先验分布为 B e ( 3 , 6 ) Be(3,6) Be(3,6)

  14. 有样本的分布函数为 p ( x ∣ λ ) = λ n e − λ ∑ i = 1 n x i p(x|\lambda)=\lambda^ne^{-\lambda\sum_{i=1}^nx_i} p(xλ)=λneλi=1nxi

    1. 先验分布有 π ( λ ) ∝ λ α − 1 e − β λ \pi(\lambda)\varpropto \lambda^{\alpha-1}e^{-\beta\lambda} π(λ)λα1eβλ

      可有后验分布 π ( λ ∣ x ) ∝ p ( x ∣ λ ) π ( λ ) ∝ λ n e − λ ∑ i = 1 n x i λ α − 1 e − β λ ∝ λ n + α − 1 e − λ ( ∑ i = 1 n x i + β ) \pi(\lambda|x)\varpropto p(x|\lambda)\pi(\lambda)\varpropto\lambda^ne^{-\lambda\sum_{i=1}^nx_i}\lambda^{\alpha-1}e^{-\beta\lambda}\\\varpropto\lambda^{n+\alpha-1}e^{-\lambda(\sum_{i=1}^nx_i+\beta)} π(λx)p(xλ)π(λ)λneλi=1nxiλα1eβλλn+α1eλ(i=1nxi+β)

      可以看到,仍然是伽马分布的形式

    2. 根据伽马分布可有 α β = 0.0002 , α β 2 = 0.0001 \frac{\alpha}{\beta}=0.0002,\frac{\alpha}{\beta^2}=0.0001 βα=0.0002,β2α=0.0001

      可解得 α = 0.0004 , β = 2 \alpha=0.0004,\beta=2 α=0.0004,β=2

  15. x − N ( θ 1 , 1 2 θ 2 ) x-N(\theta_1,\frac1{2\theta_2}) xN(θ1,2θ21)
    p ( x ∣ θ ) = ( 1 2 π ∗ 1 2 θ 2 ) e x p { − ( x − θ 1 ) 2 1 θ 2 } p(x|\theta)=(\frac1{\sqrt{2\pi*\frac1{2\theta_2}}})exp\{-\frac{(x-\theta_1)^2}{\frac1{\theta2}}\} p(xθ)=(2π2θ21 1)exp{θ21(xθ1)2}
    可有 p ( x ‾ ∣ θ 1 , θ 2 ) ∝ θ 2 n 2 e x p { − θ 2 ∑ i = 1 n ( x i − θ 1 ) 2 } p(\overline{x}|\theta_1,\theta_2)\varpropto \theta_2^{\frac n2}exp\{-\theta_2\sum_{i=1}^n(x_i-\theta_1)^2\} p(xθ1,θ2)θ22nexp{θ2i=1n(xiθ1)2}
    θ 1 ∣ θ 2 − N ( 0 , 1 2 θ 2 ) \theta_1|\theta_2-N(0,\frac1{2\theta_2}) θ1θ2N(0,2θ21)
    可有 π ( θ 1 , θ 2 ) = π ( θ 1 ∣ θ 2 ) π ( θ 2 ) ∝ ( 1 2 π 1 2 θ 2 ) e x p { − ( θ 1 ) 2 1 θ 2 } λ α Γ ( α ) θ 2 α − 1 e − λ θ 2 \pi(\theta_1,\theta_2)=\pi(\theta_1|\theta_2)\pi(\theta_2)\varpropto (\frac1{\sqrt{2\pi\frac1{2\theta_2}}})exp\{-\frac{(\theta_1)^2}{\frac1{\theta_2}}\}\frac{\lambda^{\alpha}}{\Gamma(\alpha)}\theta_2^{\alpha-1}e^{-\lambda\theta_2} π(θ1,θ2)=π(θ1θ2)π(θ2)(2π2θ21 1)exp{θ21(θ1)2}Γ(α)λαθ2α1eλθ2
    π ( θ 1 , θ 2 ) ∝ λ α Γ ( α ) θ 2 1 2 + α − 1 e x p { − θ 2 ( θ 1 2 + λ ) } \pi(\theta_1,\theta_2)\varpropto \frac{\lambda^{\alpha}}{\Gamma(\alpha)}\theta_2^{\frac12+\alpha-1}exp\{-\theta_2(\theta_1^2+\lambda)\} π(θ1,θ2)Γ(α)λαθ221+α1exp{θ2(θ12+λ)}
    可有 π ( θ 1 , θ 2 ∣ x ) ∝ p ( x ‾ ∣ θ 1 , θ 2 ) π ( θ 1 , θ 2 ) ∝ θ 2 n 2 e x p { − θ 2 ∑ i = 1 n ( x i − θ 1 ) 2 } λ α Γ ( α ) θ 2 1 2 + α − 1 e x p { − θ 2 ( θ 1 2 + λ ) } ∝ θ 2 n + 1 2 + α − 1 e x p { − θ 2 ( ∑ i = 1 n x i 2 − 2 θ 1 ∑ i = 1 n x i + ( n + 1 ) θ 1 2 + λ ) } \pi(\theta_1,\theta_2|x)\varpropto p(\overline{x}|\theta_1,\theta_2)\pi(\theta_1,\theta_2)\\ \varpropto \theta_2^{\frac n2}exp\{-\theta_2\sum_{i=1}^n(x_i-\theta_1)^2\}\frac{\lambda^{\alpha}}{\Gamma(\alpha)}\theta_2^{\frac12+\alpha-1}exp\{-\theta_2(\theta_1^2+\lambda)\}\\\varpropto \theta_2^{\frac{n+1}2+\alpha-1}exp\{-\theta_2(\sum_{i=1}^nx_i^2-2\theta_1\sum_{i=1}^nx_i+(n+1)\theta_1^2+\lambda)\} π(θ1,θ2x)p(xθ1,θ2)π(θ1,θ2)θ22nexp{θ2i=1n(xiθ1)2}Γ(α)λαθ221+α1exp{θ2(θ12+λ)}θ22n+1+α1exp{θ2(i=1nxi22θ1i=1nxi+(n+1)θ12+λ)}

  16. 比较麻烦,用核比较好
    p ( X ∣ θ ) = ∏ i = 1 n p ( x i ∣ θ ) = c n ( θ ) e x p { ϕ ( θ ) ∑ i = 1 n T ( x i ) } ∏ i = 1 n h ( x i ) p(X|\theta)=\prod_{i=1}^np(x_i|\theta)=c^n(\theta)exp\{\phi(\theta)\sum_{i=1}^nT(x_i)\}\prod_{i=1}^nh(x_i) p(Xθ)=i=1np(xiθ)=cn(θ)exp{ϕ(θ)i=1nT(xi)}i=1nh(xi)
    可有 π ( θ ∣ X ) ∝ p ( X ∣ θ ) π ( θ ) ∝ c n ( θ ) e x p { ϕ ( θ ) ∑ i = 1 n T ( x i ) } ∏ i = 1 n h ( x i ) c η ( θ ) e x p { ϕ ( θ ) ν } ∝ c n + η ( θ ) e x p { ( ∑ i = 1 n T ( x i ) ∏ i = 1 n h ( x i ) + ν ) ϕ ( θ ) } \pi(\theta|X)\varpropto p(X|\theta)\pi(\theta) \\\varpropto c^n(\theta)exp\{\phi(\theta)\sum_{i=1}^nT(x_i)\}\prod_{i=1}^nh(x_i)c^{\eta}(\theta)exp\{\phi(\theta)\nu\}\\\varpropto c^{n+\eta}(\theta)exp\{(\sum_{i=1}^nT(x_i)\prod_{i=1}^nh(x_i)+\nu)\phi(\theta)\} π(θX)p(Xθ)π(θ)cn(θ)exp{ϕ(θ)i=1nT(xi)}i=1nh(xi)cη(θ)exp{ϕ(θ)ν}cn+η(θ)exp{(i=1nT(xi)i=1nh(xi)+ν)ϕ(θ)}
    可以看到,这和先验分布是同形式的

  17. 超纲啦。。。

  18. 假设 λ \lambda λ的先验分布为 π ( λ ) \pi(\lambda) π(λ)
    X − P ( λ ) X-P(\lambda) XP(λ)
    p ( x ∣ λ ) = λ x e − λ Γ ( x + 1 ) p(x|\lambda)=\frac{\lambda^xe^{-\lambda}}{\Gamma(x+1)} p(xλ)=Γ(x+1)λxeλ
    可有样本的分布函数为 p ( x ‾ ∣ λ ) = ∏ i = 1 n p ( x i ∣ λ ) = λ ∑ i = 1 n x i e − n λ ∏ i = 1 n Γ ( x i ) p(\overline{x}|\lambda)=\prod_{i=1}^np(x_i|\lambda)=\frac{\lambda^{\sum_{i=1}^nx_i}e^{-n\lambda}}{\prod_{i=1}^n\Gamma(x_i)} p(xλ)=i=1np(xiλ)=i=1nΓ(xi)λi=1nxienλ
    从而有 π ( λ ∣ x ‾ ) ∝ p ( x ∣ λ ) π ( λ ) λ ∑ i = 1 n x i e − n λ π ( λ ) \pi(\lambda|\overline{x})\varpropto p(x|\lambda)\pi(\lambda)\lambda^{\sum_{i=1}^nx_i}e^{-n\lambda}\pi(\lambda) π(λx)p(xλ)π(λ)λi=1nxienλπ(λ)
    可以看到,后验分布只与样本的和有关,故可以用样本的和 ∑ i = 1 n x i \sum_{i=1}^nx_i i=1nxi来代替样本,故可证为充分统计量

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
先验分布(Prior Distribution)是指在考虑任何观测数据之前,对于未知参数的分布假设。它是基于先前的经验、理论或其他信息,对于未知参数的概率分布进行的猜测。在统计推断中,先验分布通常是由专家知识、历史数据或相关研究提供的。 后验分布(Posterior Distribution)是指在考虑观测数据后,对于未知参数的分布假设。它是在先验分布的基础上,根据观测数据的结果进行更新后得到的分布。在贝叶斯统计学中,后验分布是由先验分布和似然函数的乘积归一化得到的。 以下是一个简单的示例,演示如何使用Python实现先验分布后验分布: 假设我们想要推断一枚硬币正面朝上的概率$p$。我们假设先验分布为伯努利分布,即$p \sim Ber(\theta)$,其中$\theta$是未知参数,我们假设$\theta = 0.5$。我们进行了$n$次试验,其中有$k$次正面朝上。我们可以使用Python来计算后验分布。 首先,我们需要导入所需的库: ```python import numpy as np import matplotlib.pyplot as plt ``` 然后,我们定义先验分布: ```python theta = 0.5 # 先验分布的参数 prior = np.array([theta, 1-theta]) # 先验分布 ``` 接下来,我们定义似然函数: ```python def likelihood(k, n, theta): return theta**k * (1-theta)**(n-k) ``` 然后,我们可以计算后验分布: ```python n = 10 # 试验次数 k = 7 # 正面朝上的次数 posterior = prior * likelihood(k, n, theta) # 后验分布 posterior = posterior / np.sum(posterior) # 归一化 ``` 最后,我们可以绘制先验分布后验分布的图像: ```python x = np.array([0, 1]) plt.bar(x, prior, alpha=0.5, label='Prior') plt.bar(x, posterior, alpha=0.5, label='Posterior') plt.legend() plt.show() ``` 运行代码后,我们可以得到以下图像,显示出先验分布后验分布的差异。 ![先验分布后验分布的图像](https://i.loli.net/2021/08/12/7j1UmHJi5OeZSvR.png)

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值