onnxruntime推理

在onnx模型文件测试时发现cpu版本推理速度慢,所以打算使用gpu版本推理
在这里插入图片描述
之前onnxruntime使用的是cpu版本的需要uninstall
1 然后重新pip install onnxruntime-gpu
2 安装好之后进入pyhton

import onnxruntime
print(onnxruntime.get_device())
输出GPU
3 检查是否能推理
import onnxruntime
ort_session = onnxruntime.InferenceSession(“./save_model/last_epoch_weights_batch1.onnx”,providers=[‘CUDAExecutionProvider’])
print(ort_session.get_providers())
输出
[‘CUDAExecutionProvider’, ‘CPUExecutionProvider’] 表示OK
4 最后,原始的cpu推理创建session的代码需要修改一下
ort_session = ort.InferenceSession(‘.batch1.onnx’) # cpu版本
ort_session = ort.InferenceSession(‘batch1.onnx’,providers=[‘CUDAExecutionProvider’]) # gpu版本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值